精英家教网 > 初中数学 > 题目详情

【题目】如图,某工程队从A点出发,沿北偏西67度方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23度的方向继续修建BC段,到达C点又改变方向,使所修路段CE∥AB,此时∠ECB有多少度?试说明理由.

【答案】解:∠ECB=90°.
理由:∵∠1=67°,
∴∠2=67°.
∵∠3=23°,
∴∠CBA=180°﹣67°﹣23°=90°.
∵CE∥AB,
∴∠ECB=∠CBA=90°.

【解析】先根据平行线的性质求出∠2的度数,再由平角的定义求出○CBA的度数,根据CE∥AB即可得出结论.
【考点精析】利用平行线的性质对题目进行判断即可得到答案,需要熟知两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】交通安全是社会关注的热点问题,安全隐患主要是超速和超载.某中学八年级数学活动小组的同学进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点P,在公路1上确定点O、B,使得PO⊥l,PO=100米,∠PBO=45°.这时,一辆轿车在公路1上由B向A匀速驶来,测得此车从B处行驶到A处所用的时间为3秒,并测得∠APO=60°.此路段限速每小时80千米,试判断此车是否超速?请说明理由(参考数据: =1.41, =1.73).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求代数式 的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,垂足为F,求∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2012四川雅安)在平面直角坐标系中,三角形ABC的三个顶点坐标分别是A(4,5),B(1,2),C(4,2),将三角形ABC向左平移5个单位后,A点的对应点A′的坐标是( )

A.(0,5)

B.(-1,5)

C.(9,5)

D.(-1,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个两位数,个位数字是 2,若十位上的数字为 a,则这个两位数可表示为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校开展捐书活动,以下是5名同学捐书的册数:495x3,已知这组数据的平均数是5,则这组数据的中位数和众数分别是(

A. 33 B. 44 C. 34 D. 55

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填写下列解题过程中的推理根据:
已知:如图,点F、E分别在AB、CD上,AE、DF分别与BC相交于H、G,∠A=∠D,∠1+∠2=180°.说明:AB∥CD

解:∵∠1=∠CGD(
∠1+∠2=180°
.
∴AE//FD (
(两直线平行,同位角相等)
又∠A=∠D
∴∠D=∠BFD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究与发现:

(1)探究一:三角形的一个内角与另两个内角的平分线所夹的角之间的关系
已知:如图1,在△ADC中,DP、CP分别平分∠ADC和∠ACD,
试探究∠P与∠A的数量关系,并说明理由.
(2)探究二:四边形的两个个内角与另两个内角的平分线所夹的角之间的关系
已知:如图2,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,
试探究∠P与∠A+∠B的数量关系,并说明理由.
(3)探究三:六边形的四个内角与另两个内角的平分线所夹的角之间的关系
已知:如图3,在六边形ABCDEF中,DP、CP分别平分∠EDC和∠BCD,
请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:

查看答案和解析>>

同步练习册答案