精英家教网 > 初中数学 > 题目详情
(2013•永春县质检)如图所示,直线AB与x轴交于点A(3,0),与y轴交于点B(0,4),点P为双曲线y=
6
x
(x>0)上的一点,点P分别作x轴、y轴的垂线段PE、PF,当PE、PF分别与线段AB交于点C、D时.
(1)AB=
5
5

(2)AD•BC=
25
2
25
2
分析:(1)直接利用勾股定理求得AB的长即可;
(2)首先求得直线AB的解析式,然后设P的坐标是(m,
6
m
),据此即可求得线段AD、BC的长,从而求解.
解答:解:(1)∵直线AB与x轴交于点A(3,0),与y轴交于点B(0,4),
∴OA=3,OB=4,
∴由勾股定理得AB=
32+42
=5,;

(2):设直线AB的解析式是y=kx+b,
则:
b=4
3k+b=0

解得:
则直线的解析式是:y=-
4
3
x+4.
设P的坐标是(m,
6
m
),在y=-
4
3
x+4中,令y=
6
m
,解得:x=3-
9
2m
,故D的坐标是(3-
9
2m
6
m
);
在y=-
4
3
x+4中,令x=m,解得:y=4-
4
3
m,则C的坐标是:(m,4-
4
3
m).
则AD=
(
9
2m
)2+(
6
m
)2
=
15
2m

BC=
m2+(
4
3
)2
=
5
3
m,
则AD•BC=
15
2m
5
3
m=
25
2

故答案是:5,
25
2
点评:本题考查了待定系数法求函数的解析式,利用数形结合解决此类问题,是非常有效的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•永春县质检)将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC上的点F处,则
BF
AB
的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•永春县质检)一个不透明的口袋里装有红、白、黄三种颜色的小球(除颜色外其余都相同),其中白球有2个,黄球有1个.若从中任意摸出一个球,这个球是白球的概率为
12

(1)求口袋中红球的个数;
(2)把口袋中的球搅匀后先摸出一个球,不放回,再摸出第二个球,请你用画树状图或列表的方法表示所有等可能的结果,并说明摸出‘一黄一白’和摸出‘两个白球’这两个事件发生的概率相等吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•永春县质检)已知正比例函数y=x和反比例函数y=
k
x
的图象都经过点A(3,3).
(1)求反比例函数的解析式;
(2)将直线OA绕点O顺时针旋转得到直线l,当直线l过点B(3,
3
)时,求∠AOB的度数;
(3)点P在y轴上,若△AOP是等腰三角形,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•永春县质检)如图,在矩形OABC中,点A、C的坐标分别是(a,0),(0,
3
),点D是线段BC上的动点(与B、C不重合),过点D作直线l:y=-
3
x+b
交线段OA于点E.
(1)直接写出矩形OABC的面积(用含a的代数式表示);
(2)已知a=3,当直线l将矩形OABC分成周长相等的两部分时
①求b的值;
②梯形ABDE的内部有一点P,当⊙P与AB、AE、ED都相切时,求⊙P的半径.
(3)已知a=5,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,设CD=k,当k满足什么条件时,使矩形OABC和四边形O1A1B1C1的重叠部分的面积为定值,并求出该定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•永春县质检)解方程:2x=10.

查看答案和解析>>

同步练习册答案