精英家教网 > 初中数学 > 题目详情
14、如图,E、F分别是等腰△ABC的腰AB、AC的中点.用尺规在BC边上求作一点M,使四边形AEMF为菱形.
(不写作法,保留作图痕迹)
分析:根据菱形的判定,以E为圆心,EA为半径画弧,交BC于点M,即可得出AE=EM=FM=AF,即可得出四边形AEMF为菱形.
解答:解:以E为圆心,EA为半径画弧,交BC于点M,M点即为所求.
点评:此题主要考查了菱形的判定以及作复杂图形,根据已知熟练应用菱形的判定得出是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,E、D分别是等边三角形ABC的AB、AC边上的点,且D为AC的中点,
AE
EB
=
1
3
,则和△AED(不包含△AED)相似的三角形有(  )
A、4个B、3个C、2个D、1个

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•安溪县质检)如图,D、E分别是等边三角形ABC的AB、CA边延长线上的点,且BD=AE,连接BE、CD.求证:BE=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•江汉区模拟)如图,D、E分别是等边三角形ABC的边BC、CA延长线上的点,且CD=AE,连接AD、BE,求证:AD=BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD、BE分别是等边三角形ABC的高,EF∥BC交AD于点F,BE=6cm,求S△BEF

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD、BE分别是等边△ABC中BC、AC上的高.M、N分别在AD、BE的延长线上,∠CBM=∠ACN.求证:AM=BN.

查看答案和解析>>

同步练习册答案