A. | 2$\sqrt{2}$km | B. | 2$\sqrt{3}$km | C. | 4 km | D. | ($\sqrt{3}$+1)km |
分析 过点A作AD⊥OB于D.先解Rt△AOD,得出AD=$\frac{1}{2}$OA=2km,再由△ABD是等腰直角三角形,得出BD=AD=2km,则AB=$\sqrt{2}$AD=2$\sqrt{2}$km.
解答 解:如图,过点A作AD⊥OB于D.
在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4km,
∴AD=$\frac{1}{2}$OA=2km.
在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,
∴BD=AD=2km,
∴AB=$\sqrt{2}$AD=2$\sqrt{2}$km.
即该船航行的距离(即AB的长)为2$\sqrt{2}$km.
故选:A.
点评 此题是解直角三角形的应用--方向角问题,主要考查了方向角,解直角三角形,难度适中,作出辅助线构造直角三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 5÷35×100% | B. | 5÷(35+5)×100% | C. | 5÷(35-5)×100% |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | $\sqrt{7}$ | C. | $\sqrt{10}$ | D. | $\sqrt{10}$-2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 25$\sqrt{3}$海里 | B. | $\frac{100\sqrt{3}}{3}$海里 | C. | 25海里 | D. | 50海里 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com