精英家教网 > 初中数学 > 题目详情

【题目】RtABC中,∠C90°

1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2

2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)

【答案】1)证明见解析;(2)作图见解析.

【解析】

1)连接OF,可证得OFBC,结合平行线的性质和圆的特性可求得∠1=∠OFB=∠2,可得出结论;

2)由(1)可知切点是∠ABC的角平分线和AC的交点,圆心在BF的垂直平分线上,由此即可作出⊙M

解:(1)证明:如图①,连接OF

AC是⊙O的切线,

OEAC

∵∠C90°

OEBC

∴∠1=∠OFB

OFOB

∴∠OFB=∠2

∴∠1=∠2

2)如图②所示⊙M为所求.①

①作∠ABC平分线交ACF点,

②作BF的垂直平分线交ABM,以MB为半径作圆,

即⊙M为所求.

证明:∵MBF的垂直平分线上,

MFMB

∴∠MBF=∠MFB

又∵BF平分∠ABC

∴∠MBF=∠CBF

∴∠CBF=∠MFB

MFBC

∵∠C90°

FMAC

∴⊙M与边AC相切.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABO的直径,直线BMAB于点B,点CO上,分别连接BCAC,且AC的延长线交BM于点DCFO的切线交BM于点F

(1)求证:CFDF

(2)连接OF,若AB=10,BC=6,求线段OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,点OBC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点DBC的平行线与AC的延长线相交于点P.

(1)求证:PD是⊙O的切线;

(2)求证:△ABD∽△DCP;

(3)当AB=5cm,AC=12cm时,求线段PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=ax2-4ax+c(a0)y轴交于点A,将点A向右平移2个单位长度,得到点B.直线x轴,y轴分别交于点CD.

1)求抛物线的对称轴.

2)若点A与点D关于x轴对称.

①求点B的坐标.

②若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在河对岸有一棵大树 A,在河岸 B 点测得 A 在北偏东 60°方向上,向东前进 200m 到达 C 点,测得 A 在北偏东 30°方向上,求河的宽度(精确到 0.1m).参考数据 ≈1.414≈1.732

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图直线x轴、y轴分别交于点ABC的中点,点D在直线上,以为直径的圆与直线的另一交点为E,交y轴于点FG,已知,则的长是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面高为8米的点处要安装两盏警示灯,则这两盏灯的水平距离____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线yax2+bx+2x轴交于AB两点,与y轴交于点CAB4,矩形OBDC的边CD1,延长DC交抛物线于点E

1)求抛物线的解析式;

2)如图2,点P是直线EO上方抛物线上的一个动点,过点Py轴的平行线交直线EO于点G,作PHEO,垂足为H.设PH的长为l,点P的横坐标为m,求lm的函数关系式(不必写出m的取值范围),并求出l的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小华设计的作一个角等于已知角的2的尺规作图过程.

已知:

求作:,使得

作法:如图,

①在射线上任取一点

②作线段的垂直平分线,交于点,交于点

③连接

所以即为所求作的角.

根据小华设计的尺规作图过程,

(1)使用直尺和圆规补全图形(保留作图痕迹)

(2)完成下面的证明(说明:括号里填写推理的依据)

证明:∵是线段的垂直平分线,

______(______)

(______)

查看答案和解析>>

同步练习册答案