【题目】已知,直线l1:y=3x﹣2k与直线l2:y=x+k交点P的纵坐标为5,直线l1与直线l2与y轴分别交于A、B两点.
(1)求出点P的横坐标及k的值;
(2)求△PAB的面积;
(3)点M为直线l1上的一个动点,当△MAB面积与△PAB面积之比为2:3时,求此时的点M的坐标【1】
【答案】(1)P的横坐标为3,k的值是2;(2)9;(3)(2,2)或(﹣2,﹣6).
【解析】
(1)把y=5代入两个函数的解析式,联立即可求出点P的横坐标及k的值;
(2)根据(1)中的结果可以分别求得两条直线的解析式,从而可以求得点A和点B的坐标,进而求得△PAB的面积;
(3)根据(2)中的结果和题意可以求得△MAB的面积,进而求得点M的坐标.
解:(1)∵直线l1:y=3x﹣2k与直线l2:y=x+k交点P的纵坐标为5,
∴5=2x﹣2k,得x=,5=x+k,得x=5﹣k,
∴=5﹣k,
解得,k=2,
∴x=3,
即点P的横坐标为3,k的值是2;
(2)∵k=2,
∴直线l1:y=3x﹣4与直线l2:y=x+2,
∵直线l1与直线l2与y轴分别交于A、B两点,
∴点A(0,﹣4),点B(0,2),
又∵点P(3,5),
∴△PAB的面积是=9;
(3)∵点M为直线l1上的一个动点,△MAB面积与△PAB面积之比为2:3,△PAB的面积是9,
∴△MAB的面积是9÷3×2=6,
设点M的坐标为(m,n),
则=6,
解得,m=±2,
∵直线l1:y=3x﹣4,点M在直线l1上,
∴当m=2时,n=2,当m=﹣2时,n=﹣6,
故答案为:(2,2)或(﹣2,﹣6).
科目:初中数学 来源: 题型:
【题目】某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.
(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;
(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,解答下面的问题:
我们知道方程有无数个解,但在实际生活中我们往往只需求出其
正整数解.
例:由,得:,(x、y为正整数)
∴,则有.又为正整数,则为正整数.由2与3互质,可知:x为3的倍数,从而x=3,代入∴2x+3y=12的正整数解为
问题:
(1)请你写出方程的一组正整数解: .
(2)若为自然数,则满足条件的x值为 .
(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当点B的横坐标为4时,m的值是_____.当点B的横坐标为4n(n为正整数)时,m=_____(用含n的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=8,AB=6,则线段CE的长度是( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若我们规定三角“”表示为:abc;方框“”表示为:(xm+yn).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:
(1)计算:= ______ ;
(2)代数式为完全平方式,则k= ______ ;
(3)解方程:=6x2+7.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在线段OA,OC上,且OB=OD,∠1=∠2,AE=CF.
(1)证明:△BEO≌△DFO;
(2)证明:四边形ABCD是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△AOB和△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒20°的速度沿顺时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com