【题目】如图1在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.
(1)求证:①△ADC≌△CEB;②DE=AD+BE.
(2)当直线MN绕点C旋转到图2的位置时,DE、AD、BE又怎样的关系?并加以证明.
【答案】(1)①见解析,②见解析;(2)DE=AD-BE,证明见解析.
【解析】
(1)①先利用同角的余角相等证得∠DAC=∠ECB,再根据AAS即可证得结论;②根据①的结论可得AD=CE,DC=EB,进一步即得结论;
(2)同(1)的证法得出△ADC≌△CEB,根据全等三角形的性质可得AD=CE,DC=BE,进一步即可得出结论.
(1)证明:①∵∠ACD+∠ACB+∠BCE=180°,∠ACB=90°,
∴∠ACD+∠BCE=90°.
∵AD⊥MN,BE⊥MN,
∴∠ADC=∠CEB=90°,∠DAC+∠ACD=90°,
∴∠DAC=∠ECB,
在△ADC和△CEB中,
∴△ADC≌△CEB(AAS).
②由①知:△ADC≌△CEB,
∴AD=CE,DC=EB,
∵DE=CE+DC,
∴DE=AD+EB;
(2)DE=AD-BE.
证明:∵AD⊥CE,BE⊥CE,
∴∠ADC=∠BEC=90°,∠EBC+∠ECB=90°,
∵∠ACB=90°,
∴∠ECB+∠ACE=90°,
∴∠ACD=∠EBC.
在△ADC和△CEB中,
∴△ADC≌△CEB(AAS),
∴AD=CE,DC=BE,
∴DE=CE-CD=AD-BE.
科目:初中数学 来源: 题型:
【题目】抛物线经过点A(-1,0)、B(4,0),与y轴交于点C(0,4).
(1)求抛物线的表达式;
(2)点P为直线BC上方抛物线的一点,分别连接PB、PC,若直线BC恰好平分四边形COBP的面积,求P点坐标;
(3)在(2)的条件下,是否在该抛物线上存在一点Q,该抛物线对称轴上存在一点N,使得以A、P、Q、N为顶点的四边形为平行四边形?若存在,求出Q点坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C是线段AB的中点,延长线段AB至点D,使BD=AB,延长AD至点E,使DE=AC.
(1)依题意画出图形(尺规作图),则=_________(直接写出结果);
(2)若DE=3,求AB的长;
(3)请写出与BE长度相同的线段.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡长AB=10米,求小船C到岸边的距离CA的长?(参考数据:=1.73,结果保留两位有效数字)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,每个立方体的个面上分别写有到这个自然数,并且任意两个相对面上所写两个数字之和为,把这样的个立方体一个挨着一个地连接起来,紧挨着两个面上的数字之和为,则图中“· ”所 在面上的数字是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE⊥AD,交AB于点E,AE为⊙O的直径.
(1)判断BC与⊙O的位置关系,并证明你的结论;
(2)求证:△ABD∽△DBE;
(3)若cosB=,AE=4,求CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.
解:因为EF∥AD
所以∠2= ( )
又因为∠1=∠2
所以∠1=∠3( )
所以AB∥ ( )
所以∠BAC+ =180°( )
因为∠BAC=70°
所以∠AGD= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com