精英家教网 > 初中数学 > 题目详情
9.如图所示,AD∥BC,M和N分别是AD和BC上的点,且MB=MC,MA=MD,MN⊥BC,你能得出怎样的结论?并说明理由.(至少验证两个结论)

分析 根据平行线的性质得到MN⊥AD,根据等腰三角形的性质得到BN=CN,∠BMN=∠CMN,根据全等三角形的判定即可得到结论.

解答 解:①BN=CN,②△ABM≌△DCM,③MN⊥AD,
理由:∵AD∥BC,MN⊥BC,
∴MN⊥AD;
∵BM=CM,
∴BN=CN,∠BMN=∠CMN,
∴∠AMB=∠CMD,
在△AMB与△DMC中,$\left\{\begin{array}{l}{AM=DM}\\{∠AMB=∠DMC}\\{BM=CM}\end{array}\right.$,
∴△AMB≌△DMC.

点评 本题考查了等腰三角形的性质,全等三角形的判定,平行线的性质,熟练掌握全等三角形的判定是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.当m=-$\frac{1}{25}$时,x6-5mx4y3-(-4)x6-$\frac{1}{5}$x4y3+10中不含有x4y3项.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.我市第一小学计划2013年秋季学期扩大办学规模,学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌椅与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)
(1)一套课桌凳和一套办公桌椅的价格分别为多少元?
(2)求出课桌凳和办公桌椅的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某市对参加2013年的50000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分,请根据图标信息回答下列问题:
(1)本次调查的样本容量为200
(2)在频数分布中,a的值为60,b的值为0.05,并将频数分布直方图补充完整
(3)若视力在4.9以上(含4.9)均属正常,请根据上述信息估计全市初中毕业生中视力正常的人数有多少?
视力频数(人)百分比
4.0≤x<4.3200.1
4.3≤x<4.6400.2
4.6≤x<4.9700.35
4.9≤x<5.2a0.3
5.2≤x<5.510b

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.若m,n是方程x2-2016x+2017=0的两根,则(m2-2017m+2017)(n2-2017n+2017)的值是2017.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.已知函数y=$\frac{k}{x}$(k≠0),当x=-$\frac{1}{2}$时,y=8,则此函数的解析式为y=-$\frac{4}{x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)计算:(x-1)(2x+3)-(4x3-2x)÷2x
(2)先化简,再求值:(x-$\frac{1}{x}$)$÷\frac{{x}^{2}-2x+1}{{x}^{2}-x}$,其中x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.化简求值:3x2-[5x-2($\frac{1}{2}$x-3)+2x2],其中x=-$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOC的度数.

查看答案和解析>>

同步练习册答案