精英家教网 > 初中数学 > 题目详情
(2011•攀枝花)如图,在△ABC中,AB=BC=10,AC=12,BO⊥AC,垂足为点O,过点A作射线AE∥BC,点P是边BC上任意一点,连接PO并延长与射线AE相交于点Q,设B,P两点之间的距离为x,过点Q作直线BC的垂线,垂足为R.岑岑同学思考后给出了下面五条结论,正确的共有(  )
①△AOB≌△COB;
②当0<x<10时,△AOQ≌△COP;
③当x=5时,四边形ABPQ是平行四边形;
④当x=0或x=10时,都有△PQR∽△CBO;
⑤当时,△PQR与△CBO一定相似.

A、2条         B、3条
C、4条         D、5条
C解析:
解:①
∵AB=BC=10,AC=12,BO⊥AC,
∴AO=CO,AB=BC,BO=BO,
∴△AOB≌△COB;
故此选项正确;
②∵AE∥BC,
∴∠AQO=∠OCP,
∵AO=CO,∠AOQ=∠POC,
∴当0<x<10时,△AOQ≌△COP;
故此选项正确;
③当x=5时,
∴BP=PC=5,
∵AQ=PC,
∴AQ=PB=5,
∵AQ∥BC,
∴四边形ABPQ是平行四边形;
故此选项正确;
④当x=0或x=10时,
∠ABR≠∠COB,
∴△PQR不可能相似△CBO;
故此选项错误;
⑤当时,
∵BC=8,CO=6,
∴BO=8,
∵BP=2.8,
∴PC=7.2,
BC×AR′=BO×AC,
∴AR′=QR=9.6,
∴QR:BO=PC:CO=1.2,
∴△PQR与△CBO一定相似.
故此选项正确.
故正确的有4条,
故选:C.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•攀枝花)计算:sin30°++(1﹣π)0+

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•攀枝花)下列各命题中,真命题是(  )
A.对角线相等且互相垂直的四边形是正方形
B.如果两个三角形有两条边和一个角分别对应相等,那么这两个三角形一定全等
C.角平分线上任意一点到这个角的两边的距离相等D.相等的圆周角所对的弧相等

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•攀枝花)要使有意义,则x应该满足(  )
A.0≤x≤3B.0<x≤3且x≠1
C.1<x≤3D.0≤x≤3且x≠1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•攀枝花)如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E、F分别为AC和AB的中点,则EF=(  )
A.3B.4
C.5D.6

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(四川攀枝花卷)数学解析版 题型:解答题

(2011•攀枝花)一个不透明的袋子中,装有红黑两种颜色的小球(除颜色不同外其他都相同),其中一个红球,两个分别标有A、B黑球.
(1)小李第一次从口袋中摸出一个球,并且不放回,第二次又从口袋中摸出一个球,则小李两次都摸出黑球的概率是多少?试用树状图或列表法加以说明;
(2)小张第一次从口袋中摸出一个球,摸到红球不放回,摸到黑球放回.第二次又从口袋中摸出一个球,则小张第二次摸到黑球的概率是多少?试用树状图或列表法加以说明.

查看答案和解析>>

同步练习册答案