精英家教网 > 初中数学 > 题目详情
已知:三角形ABC内接于⊙O,过点A作直线EF.
(1)如图(1),AB为直径,要使得EF是⊙O的切线,只需保证∠CAE=∠______,并证明之;
(2)如图(2),AB为⊙O非直径的弦,(1)中你所添出的条件仍成立的话,EF还是⊙O的切线吗?若是,写出证明过程;若不是,请说明理由并与同学交流.
(1)保证∠CAE=∠ABC;
证明:∵AB为⊙O直径,
∴∠ACB=90°.
∴∠BAC+∠ABC=90°.
若∠CAE=∠ABC.
∴∠BAC+∠CAE=90°,
即∠BAE=90°,OA⊥AE.
∴EF为⊙O的切线.

(2)EF还是⊙O的切线.
证明:连接AO并延长交⊙O于点D,连接CD,如图,
∴∠ADC=∠ABC.
∵AD为⊙O的直径,
∴∠DAC+∠ADC=90°.
∵∠CAE=∠ABC=∠ADC,
∴∠DAC+∠CAE=90°.
∴∠DAE=90°,
即OA⊥EF
所以EF为⊙O的切线.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

图中△ABC外接圆的圆心坐标是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

有一边长为2
3
的cm的正三角形,若要剪一张圆形纸片能完成盖隹这个正三角形.则这个圆纸片的最小面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,甲、乙、丙、丁四位同学从四块全等的等腰直角三角形纸板上裁下四块不同的纸板(阴影部分),他们的具体裁法如下:甲同学:如图1所示裁下一个正方形,面积记为S1;乙同学:如图2所示裁下一个正方形,面积记为S2;丙同学:如图3所示裁下一个半圆,使半圆的直径在等腰Rt△的直角边上,面积记为S3;丁同学:如图所示裁下一个内切圆,面积记为S4则下列判断正确的是(  )
①S1=S2;②S3=S4;③在S1,S2,S3,S4中,S2最小.
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在坐标平面上,Rt△ABC为直角三角形,∠ABC=90°,AB垂直x轴,M为Rt△ABC的外心.若A点坐标为(3,4),M点坐标为(-1,1),则B点坐标为何(  )
A.(3,-1)B.(3,-2)C.(3,-3)D.(3,-4)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC中,∠A=50°,若O为△ABC的内心,则∠BOC的度数为______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在△ABC中,∠A=α,O为△ABC的内心,则∠BOC的度数是(  )
A.90°+
1
2
α
B.90°-
1
2
α
C.180°-αD.180°-
1
2
α

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,某市有一块由三条马路围成的三角形绿地现准备在其中建一小亭供人们休息,要求小亭中心到三条马路的距离相等,试确定小亭的中心位置.(不写作法,保留作图痕迹)

查看答案和解析>>

同步练习册答案