精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,∠C=90°,AC=9,BC=12,则其外接圆的半径为( )
A.15
B.7.5
C.6
D.3
【答案】分析:直角三角形的斜边是它的外接圆的直径,通过勾股定理求出AB即可.
解答:解:如图,
∵∠C=90°,
∴AB2=AC2+BC2,而AC=9,BC=12,
∴AB==15.
又∵AB是Rt△ABC的外接圆的直径,
∴其外接圆的半径为7.5.
故选B.
点评:本题主要考查圆周角定理及其推论,即90度的圆周角所对的弦是直径.解题的关键是熟练运用勾股定理进行计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案