精英家教网 > 初中数学 > 题目详情
如图,AD为△ABC的中线,BE为△ABD的中线.
(1)∠ABE=15°,∠BAD=26°,求∠BED的度数;
(2)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少.
分析:(1)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BED=∠ABE+∠BAD,然后代入数据计算即可得解;
(2)根据三角形的中线把三角形分成两个面积相等的三角形求出△BDE的面积,再根据三角形的面积公式列式计算即可得解.
解答:解:(1)∠BED=∠ABE+∠BAD,
=15°+26°,
=41°;

(2)∵AD为△ABC的中线,BE为△ABD的中线,
∴S△BDE=
1
2
×
1
2
S△ABC=
1
4
×40=10,
设△BDE中BD边上的高为h,
1
2
×5h=10,
解得h=4,
即△BDE中BD边上的高为4.
点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的面积,(2)根据等底等高的三角形的面积相等得到三角形的中线把三角形分成两个面积相等的三角形求出△BDE的面积是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AD为△ABC的中线,∠ADC=45°,把△ADC沿AD对折,点C落在点C′的位置,BC=4,求BC′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD为△ABC的中线,BE为△ABD的中线.
(1)在△BED中作BD边上的高,垂足为F;
(2)若△ABC的面积为20,BD=5.
①△ABD的面积为
 

②求△BDE中BD边上的高EF的长;
(3)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为△ABC的中线,BE为三角形ABD中线,
(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;
(2)在△BED中作BD边上的高;
(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为△ABC的中线,BE为△ABD的中线.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;
(2)作图:在△BED中作BD边上的高,垂足为F;
(3)若△ABC的面积为60,BD=6,则△BDE中BD边上的高为多少?(请写出解题的必要过程)
(4)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=m,S△COD=n,求S△EOD(用含m、n的代数式表示)

查看答案和解析>>

同步练习册答案