精英家教网 > 初中数学 > 题目详情
已知关于的一元二次方程有实数根,为正整数.
(1)求的值;
(2)当此方程有两个不为0的整数根时,将关于的二次函数的图象向下平移2个单位,求平移后的函数图象的解析式;
(3)在(2)的条件下,将平移后的二次函数图象位于轴左侧的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象G.当直线与图象G有3个公共点时,请你直接写出的取值范围.
(1) 1,2,3;(2);(3).

试题分析:(1)由求出正整数解即可.
(2)求出方程有两个不为0的整数根时的二次函数解析式,根据平移的性质得到平移后的函数图象的解析式.
(3)分直线有一个交点且与有两个交点和直线有两个交点且与有一个交点两种情况求解即可.
(1)∵ 方程有实数根,∴.
,解得.
为正整数,∴为1,2,3.
(2)当时,,方程的两个整数根为6,0;
时,,方程无整数根;
时,,方程的两个整数根为2,1
,原抛物线的解析式为: .
∴平移后的图象的解析式为.
(3)翻折后得到一个新的图象G的解析式为
联立,即.
.
∴当时,直线有一个交点,当时,直线有两个交点.
联立,即.
.
∴当时,直线有一个交点,当时,直线有两个交点.
∴要使直线与图象G有3个公共点即要直线有一个交点且与有两个交点;或直线有两个交点且与有一个交点.
的取值范围为.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线经过A(-1,0),B(5,0),C(0,?)三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直角梯形OABC中,AB∥OC,点A坐标为(0,6),点C坐标为(3,0),BC=,一抛物线过点A、B、 C.
(1)填空:点B的坐标为   
(2)求该抛物线的解析式;
(3)作平行于x轴的直线与x轴上方的抛物线交于点E 、F,以EF为直径的圆恰好与x轴相切,求该圆的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知二次函数的图像经过原点及点A(1,2),与x轴相交于另一点B(3,0),将点B向右平移3个单位得点C.
(1)求二次函数的解析式;
(2)点M在线段OC上,平面内有一点Q,使得四边形ABMQ为菱形,求点M坐标;
(3)点P在线段OC上,从O点出发向C点运动,过P点作x轴的垂线,交直线AO于D点,以PD为边在PD的右侧作正方形PDEF(当P点运动时,点D、点E、点F也随之运动);
①当点E在二次函数的图像上时,求OP的长;
②若点P从O点出发向C点做匀速运动,速度为每秒1个单位长度,若P点运动t秒时,直线AC与以DE为直径的⊙M相切,直接写出此刻t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知关于x的二次函数y=x2-2x+c的图像上有两点A(x1,y1),B(x2,y2),若x1<1<x2且x1+x2=2,则y1与y2的大小关系是
A.y1<y2B.y1>y2C.y1=y2D.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:二次函数中的满足下表:

……

0
1
2
3
……

……
0




……
(1)求的值;
(2)根据上表求时的的取值范围;
(3)若两点都在该函数图象上,且,试比较的大小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数)的图象如图所示,对称轴是直线,有下列结论:①;②;③;④.其中正确结论的个数是(   ).
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

点P(a,2)与点Q(3,b)是抛物线y=x2-2x+c上两点,且点P、Q关于此抛物线的对称轴对称,则ab的值为(   )
A.1B.-1C.-2D.2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若二次函数配方后为,则       .

查看答案和解析>>

同步练习册答案