£¨2012•º£µíÇøһģ£©ÒÑÖªÅ×ÎïÏßy=x2+bx+cµÄ¶¥µãΪP£¬ÓëyÖá½»ÓÚµãA£¬ÓëÖ±ÏßOP½»ÓÚµãB£®
£¨1£©Èçͼ1£¬ÈôµãPµÄºá×ø±êΪ1£¬µãBµÄ×ø±êΪ£¨3£¬6£©£¬ÊÔÈ·¶¨Å×ÎïÏߵĽâÎöʽ£»
£¨2£©ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÈôµãMÊÇÖ±ÏßABÏ·½Å×ÎïÏßÉϵÄÒ»µã£¬ÇÒS¡÷ABM=3£¬ÇóµãMµÄ×ø±ê£»
£¨3£©Èçͼ2£¬ÈôµãPÔÚµÚÒ»ÏóÏÞ£¬ÇÒPA=PO£¬¹ýµãP×÷PD¡ÍxÖáÓÚµãD£®½«Å×ÎïÏßy=x2+bx+cƽÒÆ£¬Æ½ÒƺóµÄÅ×ÎïÏß¾­¹ýµãA¡¢D£¬¸ÃÅ×ÎïÏßÓëxÖáµÄÁíÒ»¸ö½»µãΪC£¬Çë̽¾¿ËıßÐÎOABCµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Ê×ÏÈÇó³öbµÄÖµ£¬È»ºó°Ñb=-2¼°µãB£¨3£¬6£©µÄ×ø±ê´úÈëÅ×ÎïÏß½âÎöʽy=x2+bx+cÇó³öcµÄÖµ£¬Å×ÎïÏߵĽâÎöʽ¼´¿ÉÇó³ö£»
£¨2£©Ê×ÏÈÇó³öAµãµÄ×ø±ê£¬½ø¶øÇó³öÖ±ÏßABµÄ½âÎöʽ£¬ÉèÖ±ÏßABÏ·½Å×ÎïÏßÉϵĵãM×ø±êΪ£¨x£¬x2-2x+3£©£¬¹ýMµã×÷yÖáµÄƽÐÐÏß½»Ö±ÏßABÓÚµãN£¬ÔòN£¨x£¬x+3£©£¬¸ù¾ÝÈý½ÇÐÎÃæ»ýΪ3£¬Çó³öxµÄÖµ£¬MµãµÄ×ø±ê¼´¿ÉÇó³ö£»
£¨3£©ÓÉPA=PO£¬OA=c£¬¿ÉµÃPD=
c
2
£¬ÓÖÖªÅ×ÎïÏßy=x2+bx+cµÄ¶¥µã×ø±êΪ P(-
b
2
£¬
4c-b2
4
)
£¬¼´¿ÉÇó³öbºÍcµÄ¹Øϵ£¬½ø¶øµÃµ½A£¨0£¬
1
2
b2
£©£¬P£¨-
1
2
b
£¬
1
4
b2
£©£¬D£¨-
1
2
b
£¬0£©£¬¸ù¾ÝBµãÊÇÖ±ÏßÓëÅ×ÎïÏߵĽ»µã£¬Çó³öBµãµÄ×ø±ê£¬ÓÉƽÒƺóµÄÅ×ÎïÏß¾­¹ýµãA£¬¿ÉÉèƽÒƺóµÄÅ×ÎïÏß½âÎöʽΪy=x2+mx+
1
2
b2
£¬ÔÙÇó³öbÓëmÖ®¼äµÄ¹Øϵ£¬ÔÙÇó³öCµãµÄ×ø±ê£¬¸ù¾ÝÁ½¶Ô±ßƽÐÐÇÒÏàµÈµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬½áºÏ¡ÏAOC=90¡ã¼´¿ÉÖ¤Ã÷ËıßÐÎOABCÊǾØÐΣ®
½â´ð£º½â£º£¨1£©ÒÀÌâÒ⣬-
b
2¡Á1
=1
£¬
½âµÃb=-2£®
½«b=-2¼°µãB£¨3£¬6£©µÄ×ø±ê´úÈëÅ×ÎïÏß½âÎöʽy=x2+bx+cµÃ6=32-2¡Á3+c£®
½âµÃ c=3£®
ËùÒÔÅ×ÎïÏߵĽâÎöʽΪy=x2-2x+3£®

£¨2£©¡ßÅ×ÎïÏßy=x2-2x+3ÓëyÖá½»ÓÚµãA£¬
¡àA£¨0£¬3£©£®
¡ßB£¨3£¬6£©£¬
¿ÉµÃÖ±ÏßABµÄ½âÎöʽΪy=x+3£®
ÉèÖ±ÏßABÏ·½Å×ÎïÏßÉϵĵãM×ø±êΪ£¨x£¬x2-2x+3£©£¬¹ýMµã×÷yÖáµÄƽÐÐÏß½»Ö±ÏßABÓÚµãN£¬ÔòN£¨x£¬x+3£©£®£¨Èçͼ1£©
¡àS¡÷ABM=S¡÷AMN+S¡÷BMN=
1
2
MN•|xB-xA|=3
£®
¡à
1
2
[x+3-(x2-2x+3)]¡Á3=3
£®
½âµÃ x1=1£¬x2=2£®
¹ÊµãMµÄ×ø±êΪ£¨1£¬2£©»ò £¨2£¬3£©£®

£¨3£©Èçͼ2£¬ÓÉ PA=PO£¬OA=c£¬¿ÉµÃPD=
c
2
£®
¡ßÅ×ÎïÏßy=x2+bx+cµÄ¶¥µã×ø±êΪ P(-
b
2
£¬
4c-b2
4
)
£¬
¡à
4c-b2
4
=
c
2
£®
¡àb2=2c£®
¡àÅ×ÎïÏßy=x2+bx+
1
2
b2
£¬A£¨0£¬
1
2
b2
£©£¬P£¨-
1
2
b
£¬
1
4
b2
£©£¬D£¨-
1
2
b
£¬0£©£®
¿ÉµÃÖ±ÏßOPµÄ½âÎöʽΪy=-
1
2
bx
£®
¡ßµãBÊÇÅ×ÎïÏßy=x2+bx+
1
2
b2
ÓëÖ±Ïßy=-
1
2
bx
µÄͼÏóµÄ½»µã£¬
Áî -
1
2
bx=x2+bx+
1
2
b2
£®
½âµÃx1=-b£¬x2=-
b
2
£®
¿ÉµÃµãBµÄ×ø±êΪ£¨-b£¬
1
2
b2
£©£®
ÓÉƽÒƺóµÄÅ×ÎïÏß¾­¹ýµãA£¬¿ÉÉèƽÒƺóµÄÅ×ÎïÏß½âÎöʽΪy=x2+mx+
1
2
b2
£®
½«µãD£¨-
1
2
b
£¬0£©µÄ×ø±ê´úÈëy=x2+mx+
1
2
b2
£¬µÃm=
3
2
b
£®
ÔòƽÒƺóµÄÅ×ÎïÏß½âÎöʽΪy=x2+
3
2
bx+
1
2
b2
£®
Áîy=0£¬¼´x2+
3
2
bx+
1
2
b2=0
£®
½âµÃx1=-b£¬x2=-
1
2
b
£®
ÒÀÌâÒ⣬µãCµÄ×ø±êΪ£¨-b£¬0£©£®
ÔòBC=
1
2
b2
£®
ÔòBC=OA£®
ÓÖ¡ßBC¡ÎOA£¬
¡àËıßÐÎOABCÊÇƽÐÐËıßÐΣ®
¡ß¡ÏAOC=90¡ã£¬
¡àËıßÐÎOABCÊǾØÐΣ®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¶þ´Îº¯ÊýµÄ×ÛºÏÌâµÄ֪ʶ£¬´ËÌâÉè¼ÆÅ×ÎïÏß½âÎöʽµÃÇ󷨣¬Å×ÎïÏ߶¥µãÓë¶Ô³ÆÖáµÄÇó·¨ÒÔ¼°¾ØÐεÄÅж¨£¬ÌرðÊǵÚÈýÎÊÉè¼Æµ½Æ½ÒƵÄ֪ʶ£¬Í¬Ñ§ÃÇ×÷´ðʱÐèÈÏÕ棬´ËÌâÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•º£µíÇøһģ£©
2
3
µÄÏà·´ÊýÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•º£µíÇøһģ£©2012ÄêµÚÆß½ìÔ­´´Ð´º×£¸£¶ÌÐÅ΢²©´óÈü×÷Æ·³äÂúÁ˶ÔÁúÄêŨŨµÄ×£¸££¬Ö÷°ì·½¹²ÊÕµ½Ô­´´×£¸£¶ÌÐÅ×÷Æ·41 430Ìõ£¬½«41 430ÓÿÆѧ¼ÇÊý±íʾӦΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•º£µíÇøһģ£©Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏC=90¡ã£¬µãDÔÚCBÉÏ£¬DE¡ÍAB£¬ÈôDE=2£¬CA=4£¬Ôò
DB
AB
=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•º£µíÇøһģ£©½«´úÊýʽx2+4x-1»¯Îª£¨x+p£©2+qµÄÐÎʽ£¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•º£µíÇøһģ£©ÈçͼÊÇij³¬ÊÐÒ»²ãµ½¶þ²ã¹öÌÝʾÒâͼ£®ÆäÖÐAB¡¢CD·Ö±ð±íʾ³¬ÊÐÒ»²ã¡¢¶þ²ã¹öÌÝ¿Ú´¦µØÃæµÄˮƽÏߣ¬¡ÏABC=150¡ã£¬BCµÄ³¤Ô¼Îª12Ã×£¬Ôò³Ë¹öÌÝ´ÓµãBµ½µãCÉÏÉýµÄ¸ß¶ÈhԼΪ
6
6
Ã×£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸