精英家教网 > 初中数学 > 题目详情

【题目】情境观察:

如图1,△ABC中,AB=AC,∠BAC=45°CDABAEBC,垂足分别为DECDAE交于点F

①写出图1中所有的全等三角形

②线段AF与线段CE的数量关系是

问题探究:

如图2,△ABC中,∠BAC=45°AB=BCAD平分∠BACADCD,垂足为DADBC交于点E

求证:AE=2CD

拓展延伸:

如图3,△ABC中,∠BAC=45°AB=BC,点DAC上,∠EDC= BACDECE,垂足为EDEBC交于点F.求证:DF=2CE

要求:请你写出辅助线的作法,并在图3中画出辅助线,不需要证明.

【答案】1.①△ABE≌△ACE,△ADF≌△CDB;②AF=2CE.见解析;2.见解析;3.见解析

【解析】

情境观察:①由全等三角形的判定方法容易得出结果;

②由全等三角形的性质即可得出结论;

问题探究:延长ABCD交于点G,由ASA证明ADC≌△ADG,得出对应边相等CD=GD,即CG=2CD,证出∠BAE=BCG,由ASA证明ADC≌△CBG,得出AE=CG=2CD即可.

拓展延伸:作DGBCCE的延长线于G,同上证明三角形全等,得出DF=CG即可.

①图1中所有的全等三角形为ABE≌△ACEADF≌△CDB;故答案为:ABE≌△ACEADF≌△CDB

②线段AF与线段CE的数量关系是:AF=2CE;故答案为:AF=2CE

问题探究:

证明:延长ABCD交于点G,如图2所示:

AD平分∠BAC

∴∠CAD=GAD

ADCD

∴∠ADC=ADG=90°

ADCADG中,

∴△ADC≌△ADGASA),

CD=GD,即CG=2CD

∵∠BAC=45°AB=BC

∴∠ABC=90°

∴∠CBG=90°

∴∠G+BCG=90°

∵∠G+BAE=90°

∴∠BAE=BCG

ABECBG中,

∴△ADC≌△CBG中(ASA),

AE=CG=2CD

拓展延伸:

解:作DGBCCE的延长线于G

如图3所示.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点的坐标为

向上平移5个单位后得到对应的,画出,并写出的坐标;

以原点为对称中心,画出与关于原点对称的,并写出点的坐标.

以原点O为旋转中心,画出把顺时针旋转90°的图形A3B3C3,并写出C3的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、CD相交于点O,BOC=80°,OE是∠BOC的角平分线,OFOE的反向延长线.

(1)求∠2、3的度数;

(2)说明OF平分∠AOD的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场经销一种商品,已知其每件进价为40元。现在每件售价为70元,每星期可卖出500件。该商场通过市场调查发现:若每件涨价1元,则每星期少卖出10件;若每件降价1元,则每星期多卖出mm为正整数)件。设调查价格后每星期的销售利润为W元。

(1)设该商品每件涨价xx为正整数)元,

①若x=5,则每星期可卖出____件,每星期的销售利润为_____元;

②当x为何值时,W最大,W的最大值是多少。

(2)设该商品每件降价yy为正整数)元,

①写出WY的函数关系式,并通过计算判断:当m=10时每星期销售利润能否达到(1)中W的最大值;

②若使y=10时,每星期的销售利润W最大,直接写出W的最大值为_____。

(3)若每件降价5元时的每星期销售利润,不低于每件涨价15元时的每星期销售利润,求m的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,GCD的中点,E是边长AD上的动点,EG的延长线与BC的延长线相交于点F,连接CEDF

1)求证:四边形CEDF是平行四边形.

2)填空:若AB3cmBC5cm,∠B60°,则AE   时,四边形CEDF是矩形;AE   时,四边形CEDF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EFAD,将平行四边形ABCD沿着EF对折.设∠1的度数为,则∠C=______.(用含有n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(2,0),B(6,0),CB⊥x轴于点B,连接AC

画图操作:

(1)在y正半轴上求作点P,使得∠APB=∠ACB(尺规作图,保留作图痕迹)

理解应用:

(2)在(1)的条件下,

若tan∠APB ,求点P的坐标

②当点P的坐标为 时,∠APB最大

拓展延伸:

(3)若在直线yx+4上存在点P,使得∠APB最大,求点P的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】股民小胡上星期五以每股13.1元的价格买进某种股票1000股,该股票本周的涨跌情况(表格数字表示比前--天涨或跌多少元)如下表(单位:):

星期

每股涨跌

-0.3

0

-0.1

+0.2

+0.1

(1)本周内最高价是每股__________元最低价是每股元_________

(2)如果小胡在星期五收盘前将全部股票卖出,他的收益情况如何?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其顶点坐标为(1,n),且与x轴的一个交点在(3,0)和(4,0)之间,则下列结论:

①ac

②a﹣b+c>0;

③当时,y随x的增大而增大

若(﹣,y1),(,y2)是抛物线上的两点,则y1y2

一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.

其中正确结论的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案