精英家教网 > 初中数学 > 题目详情
已知直线y=
3
3
x与直线y=kx+b交于点A(m,n)(m>0),点B在直线y=
3
3
x上且与点A关于坐标原点O成中心对称.
(1)若OA=1,求点A的坐标;
(2)若坐标原点O到直线y=kx+b的距离为1.94,直线y=kx+b与x轴正半轴交于点P,且△PAB是以PA为直角边的直角三角形,求点A的坐标.(sin15°=0.26,cos15°=0.97,tan15°=0.27)
(1)解1:过点A作AD⊥x轴,垂足为D.
在RT△AOD中,
AD=n,OD=m.
∵点A(m,n)在直线y=
3
3
x上,
AD
OD
=
3
3

即tan∠AOD=
3
3

∴∠AOD=30°,
∵OA=1,
∴n=
1
2
,m=
3
2

∴A(
3
2
1
2
).
解2:过点A作AD⊥x轴,垂足为D.
在RT△AOD中,
AD=n,OD=m.
∵OA=1,
∴m2+n2=1.
又∵点A(m,n)在直线y=
3
3
x上
∴n=
3
3
m.
∴n=
1
2
,m=
3
2

∴A(
3
2
1
2
).

(2)若∠BAP=90°.
则AO=1.94.
∵∠AOP=30°,
∴点A(
97
3
100
,0.97).
若∠APB=90°.
由题意知点O是线段AB的中点.
∴OP=OA.
过点O作OE垂直AP,垂足为E.
则有OE=1.94.
∵∠AOD=30°,
∴∠AOE=15°.
在RT△AOE中,
AO=
OE
cos∠AOE

=
1.94
0.97

=2.
∴点A(
3
,1).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知一次函数的图象过点A(3,3)和点B(-1,-9)
(1)求此一次函数的解析式;
(2)求此函数与x轴、y轴的交点坐标;
(3)作出此一次函数的图象;
(4)求出此函数图象与坐标轴围成的三角形的面积和周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:一次函数y=kx+b的图象经过点A(-3,1)和B(0,2)两点,且与x轴交于点C.
(1)求此函数的解析式;(2)求S△A0C

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

2006年的夏天,某地旱情严重.该地10号,15号的人日均用水量的变化情况如图所示.若该地10号,15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为(  )
A.23B.24C.25D.26

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)求直线AB的解析式;
(2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似?
(3)当t=2秒时,四边形OPQB的面积为多少个平方单位?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

观察如图函数图象,当(  )时,函数值y<0.
A.x>2B.x<2C.x<-3D.x>-3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知变量y与x的函数图象如图所示,则函数关系式为(  )
A.y=-3x-3(0≤x≤2)B.y=-3x+3
C.y=
3
2
x-3(0≤x≤2)
D.y=3x+3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图(1),在同一直线,甲自A点开始追赶等速度前进的乙,且图(2)表示两人距离与所经时间的线型关系.若乙的速率为每秒1.5公尺,则经过40秒,甲自A点移动多少公尺(  )
A.60B.61.8C.67.2D.69

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O的圆心在坐标原点,半径为2,直线y=x+b(b>0)与⊙O交于A、B两点,点O关于直线y=x+b的对称点O′,
(1)求证:四边形OAO′B是菱形;
(2)当点O′落在⊙O上时,求b的值.

查看答案和解析>>

同步练习册答案