分析 根据圆周角定理得到∠D=∠A,设BC=3x,根据正弦的定义得到AB=5x,根据勾股定理计算即可.
解答 解:∵AB为⊙O的直径,
∴∠ACB=90°,
由圆周角定理得,∠D=∠A,又sinD=$\frac{3}{5}$,
∴sinA=$\frac{3}{5}$,即$\frac{BC}{AB}$=$\frac{3}{5}$,
设BC=3x,则AB=5x,
由勾股定理得,(5x)2-(3x)2=82,
解得,x=2,
则BC=6,
故答案为:6.
点评 本题考查的是圆周角定理和勾股定理的应用,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 开口方向确定 | B. | 对称轴位置确定 | ||
C. | 与y轴的交点一定在正半轴 | D. | 与x轴的交点一定有一个在正半轴 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 10 | B. | 3$\sqrt{10}$ | C. | 4$\sqrt{5}$ | D. | 3$\sqrt{10}$或4$\sqrt{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ($\frac{1}{2}$)-1=-$\frac{1}{2}$ | B. | 5÷(-2)×$\frac{1}{2}$=5÷(-1)=-5 | ||
C. | (2a+b)2=4a2+4ab+b2 | D. | a2•(ab)3=a4b2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com