精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+bx+c(a≠0)经过A(-2,-3)、B(3,2)两点,且与x轴相交于M、N两点,当以线段MN为直径的圆的面积最小时,求M、N两点的坐标和四边形AMBN的面积.
由抛物线经过A(-2,-3)、B(3,2)两点可得b=1-a,c=-(1+6a)
∴MN=丨x1-x2丨=|
b2-4ac
a
|=|±
25a2+2a+1
a2
|=
(
1
a
)2+
2
a
+25
=
(
1
a
+1)2+24

当a=-1时,MN最小=2
6

此时,b=2,c=5,
∴函数的解析式为:y=-x2+2x+5.
∴M(1-
6
,0),N(1+
6
,0),
此时,四边形AMBN的面积S=
1
2
MN•(|yA|+|yB|)=
1
2
×2
6
×(3+2)=5
6

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2+bx+c当x=-2时有最大值4,且二次函数图象与直线y=x+1的一个交点为P(m,0),求:
(1)m的值;
(2)二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,排球运动员甲站在点O处练习发球,球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.若把球看成点,其运行的高度y(m)与运行的水平距离x(m)是二次函数关系.以O为原点建立平面直角坐标系.
(1)在某一次发球时,甲将球从O点正上方2m的A处发出,已知球的最大飞行高度为2.6m,此时距O点的水平距离为6m.
①求抛物线的解析式.
②球能否越过球网?球会不会出界?请说明理由.
(2)若球的最大飞行高度时距O点的水平距离6m不变,要使球一定能越过球网,又不出边界,求二次函数中二次项系数的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线C1的顶点坐标是D(1,4),且经过点C(2,3),又与x轴交于点A、E(点A在点E左边),与y轴交于点B.
(1)抛物线C1的表达式是______;
(2)四边形ABDE的面积等于______;
(3)问:△AOB与△DBE相似吗?并说明你的理由;
(4)设抛物线C1的对称轴与x轴交于点F.另一条抛物线C2经过点E(C2与C1不重合),且顶点为M(a,b),对称轴与x轴交于点G,并且以M、G、E为顶点的三角形与以点D、E、F为顶点的三角形全等,求a、b的值.(只需写出结果,不必写解答过程).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一家电脑公司推出一款新型电脑,投放市场以来,前两个月的利润情况如图所示,该图可以近似地看作抛物线的一部分,其中第x月的利润为y万元,往后y与x满足的关系不变.请结合图象解答下列问题:
(1)求抛物线对应的二次函数解析式;
(2)该公司在经营此款电脑的过程中,第几月的利润最大?最大利润是多少?
(3)公司打算,从月利润下降开始,每月对下月的销售额进行预测,若下月与该月的利润差额超过10万元,则下月就停止销售该产品,请你预测该产品持续销售的月数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)在足球比赛中,当守门员远离球门时,进攻队员常常使用“吊射”的战术(把球高高地挑过守门员的头顶射入球门).一位球员在离对方球门30米的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14米时,足球到达最大高度
32
3
米,如图,以球门底部为坐标原点建立坐标系,球门PQ的高度为2.44米,试通过计算说明,球是否会进入球门?
(2)在(1)中,若守门员站在距球门2米远处,而守门员跳起后最多能摸到2.75米高处,他能否在空中截住这次吊射?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

养鸡专业户小李要建一个露天养鸡场,鸡场的一边靠墙(墙足够长),其他边用竹篱笆围成,竹篱笆的长为40m,读九年级的儿子小军为他设计了如下方案:如图,把养鸡场围成等腰梯形ABCD,且∠ABC=120°.
(1)当AB为何值时,所围的面积是132
3
m2

(2)当AB为何值时,所围的面积最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-
3
2
t2+12t+30
,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为(  )
A.3sB.4sC.5sD.6s

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息:

(1)请解答小华提出的问题;
(2)能否获得比800元更多的利润?若能,请举例说明;若不能,试说明理由.

查看答案和解析>>

同步练习册答案