【题目】如图,在矩形ABCD中,点G在AD上,且GD=AB=1,AG=3,点E是线段BC上的一个动点(点E不与点B、C重合),连接GB、GE,△GBE与△GFE关于直线GE对称,当点F落在直线BC和直线DC上时,则所有满足条件的线段BE的长是_____.
【答案】3或
【解析】
△在矩形ABCD中,点E在线段BC上运动时,△GBE关于直线GE对称的△GFE的顶点F在以点G为圆心,以GB为半径的圆上,圆与矩形的边BC、DC所在直线的交点即为点F,连接GF得等腰三角形,作等腰三角形的高,交BC于点E,根据勾股定理、相似三角形的性质,全等即可求BE的长.
解:如图,
△在矩形ABCD中,点E在线段BC上运动时,
△GBE关于直线GE对称的△GFE的顶点F在以点G为圆心,
以GB为半径的圆上,
圆与矩形的边BC、DC所在直线的交点分别为点F1、F2,
连接GF1、GF2 得等腰三角形BGF1 和等腰三角形BGF2,
作GE1⊥BF1,GM⊥BF2 交BC于点E2,
①∵四边形ABE1G是矩形,
∴BE1=AG=3;
②在矩形ABCD中,GD=AB=1,AG=3,
∴BG==,
∴GF2=,
∵GD=DC=1,
∴DF2==3,
∴CF2=DF2﹣DC=2,
∴BF2===2,
∵GM⊥BF2,
∴BM=BF2=,
∵∠BME2=∠BCF2=90°,
∠MBE2=∠CBF2,
∴△BME2∽△BCF2,
∴=,
即=,
∴BE2=.
所以所有满足条件的线段BE的长是3或.
故答案为:3或.
科目:初中数学 来源: 题型:
【题目】如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A、B、C,完成下列问题:
(1)在图中标出圆心D,则圆心D点的坐标为 ;
(2)连接AD、CD,则∠ADC的度数为 ;
(3)若扇形DAC是一个圆锥的侧面展开图,求该圆锥底面半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,点A(0,3),点B(-1,0),点D(2,0),DE⊥x轴且∠BED=∠ABD,延长AE交x轴于点F.
(1)求证:∠BAE=∠BEA;
(2)求点F的坐标;
(3)如图2,若点Q(m,-1)在第四象限,点M在y轴的正半轴上,∠MEQ=∠OAF,设AM-MQ=n,求m与n的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的可能为( )
A.2B.5C.7D.9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABC的顶点A在抛物线y=x2上,顶点B,C在x轴的正半轴上,且点B的坐标为(1,0)
(1)求点D坐标;
(2)将抛物线y=x2适当平移,使得平移后的抛物线同时经过点B与点D,求平移后抛物线解析式,并说明你是如何平移的.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市2013年体育中考考试方案公布后,同学们将根据自己平的运动成绩确定自己的报考项目,下面是小亮同学近期在两个项目中连续五次测试的(得分情况得分统计表得分折线图)
立定跳远测试日期 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
得分 | 7 | 10 | 8 | 9 | 6 |
(1)请根据图表信息,分别计算小亮这两个项目测试成绩的平均数和方差;
(2)根据以上信息,你认为在立定跳远和一分钟跳绳这两个项目中,小亮应选择哪个项目作为体育考试的报考项目?并简述理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两张宽度相等的纸条叠放在一起,重叠部分构成四边形ABCD.
(1)求证:四边形ABCD是菱形;
(2)若纸条宽3cm,∠ABC=60°,求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知 ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是( )
A. 两组对边分别平行的四边形是平行四边形 B. 两组对边分别相等的四边形是平行四边形
C. 一组对边平行且相等的四边形是平行四边形 D. 对角线互相平分的四边形是平行四边形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com