精英家教网 > 初中数学 > 题目详情
精英家教网已知一个二次函数的图象经过如图所示的三个点.
(1)求抛物线的对称轴;
(2)平行于x轴的直线l的解析式为y=
254
,抛物线与x轴交于A、B两点,在抛物线的对称轴上找点P,使BP的长等于直线l与x轴间的距离.求点P的坐标.
分析:(1)设二次函数的解析式为y=ax2+bx+c,在图中可得已知坐标,代入解析式求出函数表达式即可.
(2)令y=0求出点B的坐标.然后设点P的坐标为(3,y),根据勾股定理求出y值后可求出点P的坐标.
解答:精英家教网解:(1)
设二次函数的解析式为y=ax2+bx+c,
把(0,-3),(1,2),(4,5)代入得:
-3=c
2=a+b+c
5=16a+4b+c

解得:a=-1,b=6,c=-3,
即二次函数的解析式为y=-x2+6x-3,
∴-
b
2a
=-
6
2×(-1)
=3,
∴抛物线的对称轴为直线x=3.

(2)解:当y=0时,-x2+6x-3=0
解得:x1=3+
6
,x2=3-
6

即B(3+
6
,O).
设点P的坐标为(3,y),
由勾股定理,BP2=y2+6.
∵l与x轴的距离是
25
4

可解得y=±
23
4

∴所求点P为(3,
23
4
)或(3,-
23
4
).
点评:本题考查的是二次函数的性质以及待定系数法求二次函数值的相关知识,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知一个二次函数的图象经过A(-2,
5
2
)、B(0,-
3
2
)和C(1,-2)三点.
(1)求出这个二次函数的解析式;
(2)通过配方,求函数的顶点P的坐标;
(3)若函数的图象与x轴相交于点E、F,(E在F的左边),求出E、F两点的坐标.
(4)作出函数的图象并根据图象回答:当x取什么时,y>0,y<0,y=0?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知一个二次函数的图象经过A(0,1)、B(2,3)、C(-1,-
32
)
三点.
(1)求这个二次函数的解析式;
(2)指出所求函数图象的顶点坐标和对称轴,并画出其大致图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄陂区模拟)已知一个二次函数的图象经过A(4,3),B(1,0),C(-1,8)三点,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•嘉定区一模)已知一个二次函数的图象经过A(0,3)、B(4,3)、C(1,0)三点(如图).
(1)求这个二次函数的解析式;
(2)求tan∠BAC的值;
(3)若点D在x轴上,点E在(1)中所求出的二次函数的图象上,且以点A、C、D、E为顶点的四边形是平行四边形,求点D、E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)二次函数的顶点是(1,2)且过(0,-1)点,求这个二次函数的解析式.
(2)已知一个二次函数的图象经过点(1,-1),(0,1),(-1,13),求这个二次函数的解析式.

查看答案和解析>>

同步练习册答案