精英家教网 > 初中数学 > 题目详情
精英家教网如图,在平面直角坐标系中,直线y=kx+1分别交x轴,y轴于点A,B,过点B作BC⊥AB交x轴于点C,过点C作CD⊥BC交y轴于点D,过点D作DE⊥CD交轴于点x E,过点E作EF⊥DE交y轴于点F.已知点A恰好是线段EC的中点,那么线段EF的长是
 
分析:根据解析式确定A、B两点的坐标,利用直角三角形和射影定理,最后用中位线定理计算出结果.
解答:解:因为AB的解析式为y=kx+1,所以B点坐标为(0,1),A点坐标为(-
1
k
,0),
由于图象过一、二、三象限,故k>0,
又因为BC⊥AB,BO⊥AC,
所以在Rt△ABC中,BO2=AO•CO,代入数值为:1=
1
k
•CO,CO=k,
同理,在Rt△BCD中,CO2=BO•DO,
代入数值为:k2=1•DO,DO=k2又因为A恰好是线段EC的中点,所以B为FD的中点,OF=1+1+k2,Rt△FED中,
根据射影定理,EO2=DO•OF,即(k+
1
k
+
1
k
2=k2•(1+k2+1),
整理得(k-
2
)(k+
2
)(k2+2)(k2+1)=0,解得k=
2

根据中位线定理,EF=2GB=2DC,DC=
(
2
)
2
+((
2
)
2
)
2
=
6
,EF=2
6
点评:根据图中的直角三角形的特点,多次利用射影定理,用未知数k表示出各边长并建立起关于k的方程,再利用中位线定理解答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案