精英家教网 > 初中数学 > 题目详情

已知:二次函数的图象经过原点,对称轴是直线=-2,最高点的纵坐标为4,
求:该二次函数解析式。

∵二次函数的图象对称轴是直线x=-2,最高点的纵坐标为4,
∴抛物线的顶点坐标为(-2,4),
∴设y=a(x+2)2+4(a≠0),
∵二次函数的图象经过原点,
∴代入(0,0)点,则有0=a(0+2)2+4,解得a=-1,
∴二次函数解析式为:y=-x2-4x.

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知一个二次函数的图象为抛物线C,点P(1,-4)、Q(5,-4)、R(3,0)在抛物线C上.
(1)求这个二次函数的解析式.
(2)我们知道,与y=kx+b(即kx-y+b=0)可以表示直线一样,方程x+my+n=0也可以表示一条直线,且对于直线x+my+n=0和抛物线y=ax2+bx+c(a≠0),方程组
x+my+n=0
y=ax2+bx+c
的解(x,y)作为点的坐标,所确定的点就是直线和抛物线的公共点,如果直线L:x+my+n=0过点M(1,0),且直线L与抛物线C有且只有一个公共点,求相应的m,n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一个二次函数的图象经过A(0,1)、B(1,3)、C(-1,1)三点,求这个函数的解析式,并用配方法求出图象的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一个二次函数的图象具有以下特征:(1)经过原点;(2)在直线x=1左侧的部分,图象下降,在直线x=1右侧的部分,图象上升.试写出一个符合要求的二次函数解析式y=x2-2x.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:二次函数的图象经过原点,对称轴是直线x=-2,最高点的纵坐标为4,求:该二次函数解析式.

查看答案和解析>>

同步练习册答案