精英家教网 > 初中数学 > 题目详情

已知:如图,在△ABC中,E是BC的中点,D在AC边上,若AC长是1,且∠BAC=60°,∠ABC=100°,∠DEC=80°,求S△ABC+2S△CDE

解:S△ABC+2S△CDE=
(1)如图:过C作AB的垂线交AB的延长线于G,
∵E是BC的中点,∴BE=CE=GE,
∴∠GBC=∠BGE=80°.
∵∠ABC=100°,∠DEC=80°,∠A=60°,
∴∠BCA=20°,∠EDC=80°.
∴△CDE≌△EBG,
∴S△BGE=S△DEC
∵E是BC的中点,
∴S△BGC=2S△BGE
∴2S△CDE=S△CBG
∴S△ABC+2S△CDE=S△ABC+S△CBG
=S△CGA=AG•CG
=
这是构成直角三角形的解法;

(2)如图:以AC为一边,∠BAC为-内角,构成正△ACG.
作∠GCB的平分线交GA于F,
则S△GAC=AC2•sin60°=
可证△BAC≌△FGC,△CED∽△CBF.
∵CE=BC,
∴S△CED=S△CFB
∴S△ABC+2S△CDE=S△ABC+S△CFB=S△CGA=
分析:△ABC和△CDE都是一般斜三角形,直接根据已知条件不易求得结果,但是由于△ABC中AC已知,且∠BAC=60°,若以AC为一边和以∠BAC为-内角构成直角三角形或一个等边三角形,则这两种三角形面积都能求.
点评:本题通过构造三角函数和等边三角形可以求解,利用直角三角形和等边三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案