精英家教网 > 初中数学 > 题目详情
3.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.
(1)求证:DF是⊙O的切线;
(2)若CF=1,DF=$\sqrt{3}$,求图中阴影部分的面积.

分析 (1)连接AD、OD,由AB为直径可得出点D为BC的中点,由此得出OD为△BAC的中位线,再根据中位线的性质即可得出OD⊥DF,从而证出DF是⊙O的切线;
(2)CF=1,DF=$\sqrt{3}$,通过解直角三角形得出CD=2、∠C=60°,从而得出△ABC为等边三角形,再利用分割图形求面积法即可得出阴影部分的面积.

解答 (1)证明:连接AD、OD,如图所示.
∵AB为直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AC=AB,
∴点D为线段BC的中点.
∵点O为AB的中点,
∴OD为△BAC的中位线,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切线.
(2)解:在Rt△CFD中,CF=1,DF=$\sqrt{3}$,
∴tan∠C=$\frac{DF}{CF}$=$\sqrt{3}$,CD=2,
∴∠C=60°,
∵AC=AB,
∴△ABC为等边三角形,
∴AB=4.
∵OD∥AC,
∴∠DOG=∠BAC=60°,
∴DG=OD•tan∠DOG=2$\sqrt{3}$,
∴S阴影=S△ODG-S扇形OBD=$\frac{1}{2}$DG•OD-$\frac{60}{360}$πOB2=2$\sqrt{3}$-$\frac{2}{3}$π.

点评 本题考查了等腰三角形的性质、切线的判定、扇形面积的计算以及三角形面积的计算,解题的关键是:(1)证出OD⊥DF;(2)利用分割图形求面积法求出阴影部分的面积.本题属于中档题,难度不大,解决该题型题目时,利用分割图形求面积法求面积是解题的难点,在日常练习中应加强训练.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.若一元二次方程ax2+bx-2016=0有一根为x=-1,则a-b的值为2016.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.计算:28x4y2÷7x3y2=4x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD的中点,连接EF,FM,MN,NE.
(1)依题意,补全图形;
(2)求证:四边形EFMN是矩形;
(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列图形中,轴对称图形的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.因式分解:
(1)a3-a
(2)9+6(a+b)+(a+b)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某校为了预测八年级男生“排球30秒”对墙垫球的情况,从本校八年级随机抽取了n名男生进行该项目测试,并绘制出如图的频数分布直方图,其中从左到右依次分为七个组(每组含最小值,不含最大值).根据统计图提供的信息解答下列问题:
(1)填空:n=50;这个样本数据的中位数落在第三组.
(2)若测试八年级男生“排球30秒”对墙垫球个数不低于10个为合格,根据统计结果,估计该校八年级500名男同学成绩合格的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解方程
(1)x2+4x-9=0                       
(2)$\frac{1}{x-1}$+1=$\frac{1}{2-2x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知m,n是方程x2+2x-5=0的两个实数根,则m-mn+n=3.

查看答案和解析>>

同步练习册答案