精英家教网 > 初中数学 > 题目详情
1.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动;点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P、Q同时出发,用t(秒)表示移动的时间(0<t<6).
(1)当t为何值时,△PBC为等腰直角三角形?
(2)求当移动到△QAP为等腰直角三角形时斜边QP的长.

分析 (1)由矩形的性质得出∠A=∠B=90°,CB=AD=6,当PB=CB时,△PBC为等腰直角三角形,得出方程,解方程即可;
(2)由题意得出AP=2t,DQ=t,QA=6-t当QA=AP时,△QAP为等腰直角三角形.得出方程,解方程求出t=2,得出AP、QA的长度,再由勾股定理求出QP即可.

解答 解:(1)对于任何时刻t,PB=12-2t,
∵四边形ABCD是矩形,
∴∠A=∠B=90°,CB=AD=6,
当PB=CB时,△PBC为等腰直角三角形,
即12-2t=6,
解得:t=3
∴当t=3,△PBC为等腰直角三角形;
(2)∵AP=2t,DQ=t,QA=6-t
当QA=AP时,△QAP为等腰直角三角形.
即6-t=2t.
解得:t=2(秒).
∴当t=2秒时,△QAP为等腰直角三角形.
此时 AP=4,QA=4,
在Rt△QAP中,QP=$\sqrt{Q{A}^{2}+A{P}^{2}}$=$\sqrt{{4}^{2}+{2}^{2}}$$\sqrt{{4}^{2}+{4}^{2}}$=4$\sqrt{2}$.

点评 本题主要考查矩形的性质、等腰直角三角形的性质、勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,由勾股定理得出方程是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,∠A+∠B=90°,点D在线段AB上,点E在线段AC上,作直线DE,DF平分∠BDE,DF与BC交于点F.
(1)依题意补全图形;
(2)当∠B+∠BDF=90°时,∠A与∠EDF是否相等?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.若am=an(a>0且a≠1,m、n是正整数),则m=n,利用上面结论解决问题;
①若2×8x×16x=222,求x的值;
②若(27x2=36,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.这是某商场自动扶梯示意图,若将扶梯AC水平放置,则刚好与AB一样长.已知扶梯高度CE=5cm,CD=1cm,求扶梯AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知AD为△ABC的中线,点E为AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.
(1)求证:CF=2AE;
(2)若S△ABE=2cm2,求四边形ADCF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.育才中学新建塑胶操场跑道一圈长400米,甲、乙两名运动员从同一点同时出发,相背而跑,40秒后首次相遇;若从同一起点同时同向而跑,200秒后甲首次追上乙,求这两名运动员的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,点B是线段AC的中点,点D是线段CE的中点,点M是AE的中点,四边形BCGF和CDHN都是正方形,求证:△FMH是等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点,直线DE∥AB,且点E到B,D两点的距离相等.
(1)用尺规作图作出点E;(不写作法,保留作图痕迹)
(2)连接BE,求证:BD平分∠ABE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.双曲线y1=$\frac{12}{x}$与y2=$\frac{6}{x}$在第一象限内的图象如图所示,作直线l平行于y轴,与双曲线分别交于A,B两点,连接OA,OB,则△AOB的面积为3.

查看答案和解析>>

同步练习册答案