分析 (1)根据等边三角形的性质得出AB=AC,AD=AE,∠BAC=∠EAD=60°,求出∠BAD=∠CAE,证出△BAD≌△CAE即可.
(2)证明△ABE≌△CDF,得出∠AEB=∠CFD,即∠BEC=∠DFA,进而得出DF∥BE.
解答 (1)证明:∵△ABC和△ADE均为等边三角形,
∴AB=AC,AD=AE,∠BAC=∠EAD=60°(等边三角形的性质),
∵∠BAC+∠CAD=∠EAD+∠CAD(等式性质),
∴∠BAD=∠CAE(等量代换),
在△BAD和△CAE中,$\left\{\begin{array}{l}{AB=AC}&{\;}\\{∠BAD=∠CAE}&{\;}\\{AD=AE}&{\;}\end{array}\right.$,
∴△BAD≌△CAE(SAS),
∴CE=BD(全等三角形对应边相等).
(2)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠BAE=∠DCF,
∵AE=CF,
∴△ABE≌△CDF
∴∠AEB=∠CFD,
∴∠AEB+∠BEC=180°,∠CFD+∠AFD=180°
∴∠BEC=∠AFD
∴BE∥DF.
点评 本题考查了全等三角形的性质和判定、平行四边形的性质、等边三角形的性质的应用;熟练掌握等边三角形的性质和平行四边形的性质,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1+$\sqrt{5}$ | B. | 1+$\sqrt{7}$ | C. | $\sqrt{10}$ | D. | $\sqrt{13}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com