精英家教网 > 初中数学 > 题目详情
14.如图,延长?ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.

分析 根据平行四边形的性质可得AD=BC,AD∥BC,再证出BE=DF,得出AF=EC,进而可得四边形AECF是平行四边形,从而可得AE=CF.

解答 证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴AF∥EC,
∵DF=DC,BE=BA,
∴BE=DF,
∴AF=EC,
∴四边形AECF是平行四边形,
∴AE=CF.

点评 此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对边平行且相等,一组对边平行且相等的四边形是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.阅读下列材料:
问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x,所以x=$\frac{y}{2}$,把x=$\frac{y}{2}$,代入已知方程,得($\frac{y}{2}$)2+$\frac{y}{2}$-1=0.
化简,得y2+2y-4=0,
故所求方程为y2+2y-4=0
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):
(1)已知方程x2+2x-1=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为y2-2y-1=0;
(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算:$\sqrt{2\frac{1}{4}}$+$\root{3}{-64}$×$\frac{1}{4}$-(-$\sqrt{\frac{1}{2}}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.化简$\frac{{{x^2}-1}}{x-1}$正确的是(  )
A.$\frac{{{x^2}-1}}{x-1}=\frac{{{{(x-1)}^2}}}{x-1}=\frac{1}{x-1}$B.$\frac{{{x^2}-1}}{x-1}=\frac{{{{(x-1)}^2}}}{x-1}=x-1$
C.$\frac{{{x^2}-1}}{x-1}=\frac{(x+1)(x-1)}{x-1}=x+1$D.$\frac{{{x^2}-1}}{x-1}=\frac{(x+1)(x-1)}{x-1}=\frac{1}{x+1}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在四边形ABCD中,∠A=90°,在AB边上找一点P.使得∠APD=30°(保留作图痕迹,不写作法)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将三角形ABC折叠,使AB落在斜边AC上得到线段AB',折痕为AD,则BD的长为3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.为了估计暗箱里白球的数量(箱内只有白球),将6个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现白球出现的频率稳定在0.6附近,那么可以估计暗箱里白球的个数约为(  )
A.15B.10C.9D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的三等分线交于点P、Q,求∠P+∠Q.(用含m的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列计算,正确的是(  )
A.9y-7y=2B.2x3+5x3=5x6
C.2x3y2-3y2x3=-x3y2D.-1+$\frac{1}{2}$=-1$\frac{1}{2}$

查看答案和解析>>

同步练习册答案