【题目】如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.
(1)旋转中心是点 , 旋转角度是度;
(2)若连结EF,则△AEF是三角形;并证明;
(3)若四边形AECF的面积为25,DE=2,求AE的长.
科目:初中数学 来源: 题型:
【题目】把几个数用大括号围起来,中间用逗号断开,如:{1,2,﹣3}、{﹣2,7,,19},我们称之为集合,其中的每个数称为该集合的元素.如果一个所有元素均为有理数的集合满足:当有理数a是集合的元素时,2015﹣a也必是这个集合的元素,这样的集合我们称为好的集合.例如集合{2015,0}就是一个好的集合.
(1)集合{2015}_____好的集合,集合{﹣1,2016}_____好的集合(两空均填“是”或“不是”);
(2)若一个好的集合中最大的一个元素为4011,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;
(3)若一个好的集合所有元素之和为整数M,且22161<M<22170,则该集合共有几个元素?说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴上点A对应的数为,点B对应的数为
,且多项式
的二次项系数为
,常数项为
.
(1)直接写出:;
(2)数轴上点A、B之间有一动点P,若点P对应的数为,试化简
;
(3)若点M从点A出发,以每秒1个单位长度的速度沿数轴向右移动;同时点N从点B出发,沿数轴每秒2个单位长度的速度向左移动,到达A点后立即返回并向右继续移动,求经过多少秒后,M、N两点相距1个单位长度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处出发看望B、C、D处的其它甲虫.规定:向上向右走为正,向下向左走为负,如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(-1,-4).其中第一数表示左右方向,第二个数表示上下方向,那么图中
(1)A→C( , ),B→D( , );
(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】老师在黑板上出了一道解方程的题:,小明马上举起了手,要求到黑板上去做,他是这样做的:
去分母,得4(2x-1)=1-3(x+2). ①
去括号,得8x-4=1-3x-6. ②
移项,得8x+3x=l-6+4 . ③
合并同类项,得11x=-1. ④
系数化为1,得x=-. ⑤
老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,他错在第 步(填编号),请你将正确的解方程过程写出来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=2,AC= ,∠BAC=105°,△ABD,△ACE,△BCF都是等边三角形,则四边形AEFD的面积为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数中y=ax2+bx﹣3的x、y满足表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 0 | ﹣3 | ﹣4 | ﹣3 | m | … |
(1)求该二次函数的解析式;
(2)求m的值并直接写出对称轴及顶点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.
(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;
(2)若点P在线段AB上.如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图像分別交x轴、y轴于A、B两点.与反比例函数y=﹣ 的图像交于C,D两点,DE⊥x轴于点E.已知DE=3,AE=6.
(1)求一次函数的解析式;
(2)直接写出不等式kx+b+ >0的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com