【题目】(本题满分12分)如图,平行四边形OBCD中,OB=8cm,BC=6cm,∠DOB=45°,点P从O沿OB边向点B移动,点Q从点B沿BC边向点C移动,P,Q同时出发,速度都是1cm/s.
(1)求经过O,B,D三点的抛物线的解析式;
(2)判断P,Q移动几秒时,△PBQ为等腰三角形;
(3)若允许P点越过B点在BC上运动,Q点越过C点在CD上运动,设线PQ与OB,BC,DC围成的图形面积为y(cm2),点P,Q的移动时间为t(s),请写出y与t之间的函数关系式,并写出t的取值范围.
【答案】见解析
【解析】解:(1)过点D作DM⊥OB于M,
∵平行四边形OBCD中,OB=8cm,BC=6cm,∠DOB=45°,
∴OD=BC=6cm,
∴OM=DM=ODsin45°=6×=3,
∴D(3,3),B(8,0),
设经过O,B,D三点的抛物线的解析式为:y=ax(x﹣8),
将D的坐标代入得:3=3a(3﹣8),
解得:a=﹣,∴y=﹣x(x﹣8);
(2)∵∠PBQ=180°﹣∠DOB=135°,
∴若△PBQ为等腰三角形,则PB=BQ.
设P,Q移动t秒时,△PBQ为等腰三角形,
∴P点走过的路程为t,Q点走过的路程为t,
∴PB=OB﹣t=8﹣t(cm),BQ=tcm.若PB=BQ,则8﹣t=t,解得:t=4(s).
∴P,Q移动4秒时,△PBQ为等腰三角形;
(3)如图:过点D作DM⊥OB于M,过点P作PN⊥OB于N,交CD于H,
∵四边形OBCD是平行四边形,
∴CD=OB=8cm,BC=OD=6cm,CD∥OB,HN=DM=3cm,
∴PH⊥CD,△CPH∽△BPN,
∴,
由题意得:PC=14﹣t(cm),PB=t﹣8(cm),CQ=t﹣6(cm),
∴,
解得:PH=(14﹣t),
∴y=SOBCD﹣S△CPQ=8×3﹣(t﹣6)×(14﹣t)=t2﹣5t+45,
∵P点越过B点在BC上运动,Q点越过C点在CD上运动,
∴8<t≤14,
∴y与t之间的函数关系式为y=t2﹣5t+45,t的取值范围为8<t≤14.
科目:初中数学 来源: 题型:
【题目】张老师和李老师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点10分、7点15分离家骑自行车上班,刚好在校门口遇上,已知李老师骑车的速度是张老师的1.2倍,求他们各自骑自行车的速度分别是多少米/分?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,点D是BC边上一动点(不与点B、C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为直角三角形时,求BD的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC与△A1B1C1关于点O成中心对称,下列结论:
①∠BAC=∠B1A1C1;
②AC=A1C1;
③OA=OA1;
④△ABC与△A1B1C1的面积相等,
其中正确的有( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a,b,c为常数a≠0)与x轴,y轴分别交于A,B,C三点,已知A(-1,0),B(3,0),C(0,3),动点E从抛物线的顶点点D出发沿线段DB向终点B运动.
(1)直接写出抛物线解析式和顶点D的坐标;
(2)过点E作EF⊥y轴于点F,交抛物线对称轴左侧的部分于点G,交直线BC于点H,过点H作HP⊥x轴于点P,连接PF,求当线段PF最短时G点的坐标;
(3)在点E运动的同时,另一个动点Q从点B出发沿直线x=3向上运动,点E的速度为每秒个单位长度,点Q速度均为每秒1个单位长度,当点E到达终点B时点Q也随之停止运动,设点E的运动时间为t秒,试问存在几个t值能使△BEQ为等腰三角形?并直接写出相应t值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com