精英家教网 > 初中数学 > 题目详情
若扇形面积为3π,半径为3,则弧长为
 
,圆心角是
 
分析:先根据扇形的面积公式S=
1
2
lR求出弧长,然后根据弧长公式l=
nπR
180
计算圆心角.
解答:解:根据题意得,3π=
1
2
×3×l,
∴l=2π,
∵2π=
nπ×3
180

∴n=120°.
故答案为2π,120°.
点评:本题考查了扇形的面积公式:S=
R2
360
,其中n为扇形的圆心角的度数,R为圆的半径),或S=
1
2
lR,l为扇形的弧长,R为半径.也考查了弧长公式l=
nπR
180
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,抛物线y=
1
4
x2-6
与直线y=
1
2
x
相交于A,B两点.
(1)求线段AB的长;
(2)若一个扇形的周长等于(1)中线段AB的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少;
(3)如图2,线段AB的垂直平分线分别交x轴、y轴于C,D两点,垂足为点M,分别求出OM,OC,OD的长,并验证等式
1
OC2
+
1
OD2
=
1
OM2
是否成立;
(4)如图3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,设BC=a,AC=b,AB=c.CD=b,试说明:
1
a2
+
1
b2
=
1
h2

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知二次函数y=x2-2x-3的图象与x轴交于点A、B两点,与y轴交于C点,⊙M是△ABC的外接圆.
(1)求阴影部分扇形AMC的面积;
(2)在x轴的正半轴上有一点P,作PQ⊥x轴交BC于Q,设PQ=K.
①设△OPQ的面积为S,求S关于K的函数关系式,并求出S的最大值;
②△CMQ能否与△AOC相似?若能,求出K的值;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:101网校同步练习 初三数学 北师大(新课标2001/3年初审) 北师大版 题型:044

如图,在直角坐标系xOy中,已知菱形OABC的顶点O在坐标原点,顶点B在y轴正半轴上,OA边在直线y=x上,AB边在直线y=-x+上.

(1)根据题意,直接写出菱形顶点,O、A、B、C的坐标,以及边长和∠AOC的度数;

(2)在OB上有一动点P,以O为圆心,OP为半径画弧MN,分别交OA、OC于点M、N(M、N可以与A、C重合),作⊙Q与AB、BC、弧MN都相切.设⊙Q的半径为R,OP的长为y,求y与R之间的函数关系式;

(3)以O为圆心,OA为半径作扇形OAC,请问在菱形OABC中,除去扇形OAC后的剩余部分内,是否可以作出一个圆,使所得的圆是以扇形OAC为侧面的圆锥的底面,若存在,求出这个圆的面积;若不存在说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知二次函数y=x2-2x-3的图象与x轴交于点A、B两点,与y轴交于C点,⊙M是△ABC的外接圆.
(1)求阴影部分扇形AMC的面积;
(2)在x轴的正半轴上有一点P,作PQ⊥x轴交BC于Q,设PQ=K.
①设△OPQ的面积为S,求S关于K的函数关系式,并求出S的最大值;
②△CMQ能否与△AOC相似?若能,求出K的值;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年湖南省娄底市初中毕业学业联考数学试卷(一)(解析版) 题型:解答题

如图,已知二次函数y=x2-2x-3的图象与x轴交于点A、B两点,与y轴交于C点,⊙M是△ABC的外接圆.
(1)求阴影部分扇形AMC的面积;
(2)在x轴的正半轴上有一点P,作PQ⊥x轴交BC于Q,设PQ=K.
①设△OPQ的面积为S,求S关于K的函数关系式,并求出S的最大值;
②△CMQ能否与△AOC相似?若能,求出K的值;若不能,说明理由.

查看答案和解析>>

同步练习册答案