【题目】对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:如果⊙C的半径为r,⊙C外一点P到⊙C的切线长小于或等于2r,那么点P叫做⊙C的“离心点”.
(1)当⊙O的半径为1时,
①在点P1(, ),P2(0,-2),P3(,0)中,⊙O的“离心点”是 ;
②点P(m,n)在直线上,且点P是⊙O的“离心点”,求点P横坐标m的取值范围;
(2)⊙C的圆心C在y轴上,半径为2,直线与x轴、y轴分别交于点A,B. 如果线段AB上的所有点都是⊙C的“离心点”,请直接写出圆心C纵坐标的取值范围.
【答案】(1)①, ;②1≤m≤2;(2)圆心C纵坐标的取值范围为: ≤<或<≤.
【解析】试题分析:(1)①求出各点到⊙O的切线长后根据新定义进行判断即可得;
②用含m的代数式表示出点P到⊙O的切线长后根据新定义进行比较后得到关于m的不等式进行求解后即可得;
(2)先求得A、B两点坐标,设C坐标为(0,yC ),AM、BN分别为⊙C的切线,切点分别为M、N,则有AM2=,BN2 =,由线段AB上的所有点都是⊙C的“离心点”,得不等式组,解不等式组即可得..
试题解析:(1)①过点P2作⊙O的切线P2N,切点为N,过点P3作⊙O的切线P3M,切点为M,
则∠P2NO=∠P3MO=90°,
∴P2N==,
P3M==2,
∵⊙O的半径r=1,∴点P2、P3是⊙O的“离心点”,
∵ =1,∴点P1(, )在⊙O上,∴点P1(, )表示⊙O的“离心点”,
故答案为: , ;
②过点P作⊙的切线PM,切点为M,
设P(m,-m+3),则PM2=PO2-OM2=m2+(-m+3)2-12=2m2-6m+8,
∵点P是⊙O的“离心点”,⊙O的半径为1,
∴PM≤2,
∴2m2-6m+8≤(2×1)2,
∴1≤m≤2;
(2)直线与x轴、y轴分别交于点A,B,所以A(2,0)、B(0,1),
设C坐标为(0,yC ),AM、BN分别为⊙C的切线,切点分别为M、N,
如图,AM2=AC2-CM2==,
BN2=BC2-CN2=,
∵线段AB上的所有点都是⊙C的“离心点”,
∴,
∴≤<或<≤,
即圆心C纵坐标的取值范围为: ≤<或<≤.
科目:初中数学 来源: 题型:
【题目】如图,,,点B在x轴上,且.
求点B的坐标;
求的面积;
在y轴上是否存在P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DM、DN分别交AB、AC于点E、F.则下列四个结论:①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四边形AEDF=BC2.其中正确结论是_____(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在北京市开展的“首都少年先锋岗”活动中,某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度. 方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN顶部M的仰角为35°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E. 请你利用他们的测量结果,计算人民英雄纪念碑MN的高度.
(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】求不等式(2x﹣1)(x+3)>0的解集.
解:根据“同号两数相乘,积为正”可得:①或 ②.
解①得x>;解②得x<﹣3.
∴不等式的解集为x>或x<﹣3.
请你仿照上述方法解决下列问题:
(1)求不等式(2x﹣3)(x+1)<0的解集.
(2)求不等式≥0的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P从出发,沿所示方向运动,每当碰到长方形OABC的边时会进行反弹,反弹时反射角等于入射角,当点P第2018次碰到长方形的边时,点P的坐标为______.
【答案】
【解析】
根据反射角与入射角的定义作出图形;由图可知,每6次反弹为一个循环组依次循环,用2018除以6,根据商和余数的情况确定所对应的点的坐标即可.
解:如图所示:经过6次反弹后动点回到出发点,
,
当点P第2018次碰到矩形的边时为第337个循环组的第2次反弹,
点P的坐标为.
故答案为:.
【点睛】
此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.
【题型】填空题
【结束】
15
【题目】为了保护环境,某公交公司决定购买A、B两种型号的全新混合动力公交车共10辆,其中A种型号每辆价格为a万元,每年节省油量为万升;B种型号每辆价格为b万元,每年节省油量为万升:经调查,购买一辆A型车比购买一辆B型车多20万元,购买2辆A型车比购买3辆B型车少60万元.
请求出a和b;
若购买这批混合动力公交车每年能节省万升汽油,求购买这批混合动力公交车需要多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】20筐白菜,以每筐18千克为标准,超过或不足的千克数分别用正、负数来表示.记录如下:
与标准质量的差值(单位:千克) | 3 | 2 | 1.5 | 0 | 1 | 2.5 |
筐数 | 2 | 3 | 2 | 1 | 4 | 8 |
(1)20筐白菜中,最重的一筐比最轻的一筐重 千克.
(2)与标准重量比较,20筐白菜总计超过或不足多少千克?
(3)若白菜每千克售价1.3元,则出售这20筐白菜可卖多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场将进价为元∕件的玩具以元∕件的价格出售时,每天可售出件,经调查当单价每涨元时,每天少售出件.若商场想每天获得元利润,则每件玩具应涨多少元?若设每件玩具涨元,则下列说法错误的是( )
A. 涨价后每件玩具的售价是元
B. 涨价后每天少售出玩具的数量是件
C. 涨价后每天销售玩具的数量是件
D. 可列方程为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,,,,,把一条长为2016个单位长度且没有弹性的细线线的粗细忽略不计的一端固定在点A处,并按的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com