精英家教网 > 初中数学 > 题目详情
6、如图所示,△ABC是等腰三角形,以腰AB为直径作⊙O交底BC于点P,PQ⊥AC于Q,则PQ与⊙O(  )
分析:根据已知条件AB为直径,连接AP和OP,所以AP⊥BC,可知P为BC的中点,O为AB的中点,即OP∥AC;再结合已知条件,可证出OP⊥PQ,则PQ与⊙O相切.
解答:解:连接AP、OP,
在⊙O中,AB为直径,AP⊥BC,
又∵△ABC是等腰三角形,
∴P点为BC的中点,
又∵O点为AB的中点,
∴OP∥AC,
又PQ⊥AC,
即OP⊥PQ,
∴PQ与⊙O相切.
故选A.
点评:本题主要考查了等腰三角形的性质及直线和圆的位置关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图所示,△ABC是等边三角形,延长BC至E,延长BA至F,使AF=BE,连接CF、EF,过点F作直线FD⊥CE于D,试发现∠FCE与∠FEC的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图所示,△ABC是正三角形,△A1B1 C1的三条边A1B1、BlC1、C1A1交△ABC各边分别于C2、C3,A2、A3,B2、B3.已知A2C3=C2B3=B2A3,且C2C32+B2B32=A2A32.请你证明:AlB1⊥C1A1

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,△ABC是边长为a的正三角形纸张,今在各角剪去一个三角形,使得剩下的六边形PQRSTU为正六边形,则此正六边形的周长为何(  )
A、2a
B、3a
C、
3
2
a
D、
9
4
a

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图所示,△ABC是等边三角形,AQ=PQ,PR⊥AB于R点,PS⊥AC于S点,PR=PS,则四个结论:①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP,正确的结论是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄陂区模拟)如图所示,△ABC是⊙O的内接正三角形,四边形DEFG是⊙O的内接正方形,EF∥BC,则∠AOF为(  )

查看答案和解析>>

同步练习册答案