精英家教网 > 初中数学 > 题目详情
15.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,若四边形EFGH为矩形,则四边形ABCD的对角线AC与BD须满足的关系为AC⊥BD.

分析 此题只要根据中位线的判定,求出四边形EFGH的两组对边平行,即可证得四边形EFGH是平行四边形;再由四边形EFGH为矩形,得∠HEF=90°,由平行线的性质可得结论.

解答 解:连接AC、BD,
∵E、F、G、H分别为四边形ABCD四边的中点,
∴EH∥BD,FG∥BD,HG∥AC,EF∥AC,
∴EH∥FG,EF∥HG,
∴四边形EFGH是平行四边形,
∵四边形EFGH为矩形,
∴∠HEF=90°,
∵EH∥BD,EF∥AC,
∴∠HEF=∠EPB=∠AOB=90°,
∴AC⊥BD;
故答案为:AC⊥BD.

点评 本题考查了平行四边形的判定、矩形的性质和三角形的中位线定理,为证明四边形的两组对边分别平行提供了依据.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系中,直线l∥x轴,交y轴于点A,第一象限内的点B在直线l上,连接OB,动点P满足∠APQ=90°,PQ交x轴于点C,
(1)当动点P与点B重合时,若点B的坐标是(2,1),则PA=2.
(2)当动点P在线段OB的延长线上时,点A的纵坐标与点B的横坐标相等,求PA:PC的值.
(3)在(2)的条件下,点P到x轴的距离为4,直接写出四边形AOCP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在直角坐标系中,点A,B分别在x轴负半轴、y轴正半轴上,
OA=1,OB=$\sqrt{3}$,以AB为边在第二象限作□ABCD,∠DAB=75°.
(1)若BC=$\sqrt{2}$AB,求点D的坐标;
(2)在(1)的情况下,若反比例函数y=$\frac{k}{x}$的图象经过D点,求证:点C不在反比例函数y=$\frac{k}{x}$ 的图象上;
(3)问是否存在m,使得BC=mAB,且C、D两点均在反比例函数y=$\frac{k}{x}$的图象上?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解方程组:$\left\{\begin{array}{l}{\frac{x}{4}+\frac{y}{3}=3}\\{3x-2(y-1)=2}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.阅读下面的计算方法:
计算:-5$\frac{5}{6}$+(-9$\frac{2}{3}$)+17$\frac{1}{2}$
解:原式=[(-5)+(-$\frac{5}{6}$)]+[(-9)+(-$\frac{2}{3}$)]+(17+$\frac{1}{2}$)
=[(-5)+(-9)+17]+[(-$\frac{5}{6}$)+(-$\frac{2}{3}$)+$\frac{1}{2}$
=3+(-1)
=2
上面的解法叫拆项法.请你运用这种方法计算:
(-2010$\frac{5}{6}$)-2013$\frac{2}{3}$+400$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,下列网格中,每个小正方形的边长都为1,点A、B、C都在格点上.
(1)△ABC关于点O中心对称的图形为△A1B1C1,试画出△A1B1C1
(2)△ABC绕点C按顺时针方向旋转90°得到的图形为△A2B2C,试画出△A2B2C.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),
(1)求经过B、E、C三点的抛物线的解析式;
(2)当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;
(3)若抛物线的顶点为N,过P作PQ∥y轴与抛物线交于点Q.连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,点P将线段AB分割成两条线段AP、PB,且AP:AB=PB:AP,那么点P就叫做线段AB的黄金分割点;若AB=3,那么AP的长为$\frac{-3+3\sqrt{3}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,直线y=-$\frac{3}{4}$x+3与y轴交于点A,与x轴交于点B,点P从点B出发以每秒1个单位长度的速度沿BA边向终点A运动,同时点Q以相同的速度从坐标原点O出发沿OB边向终点B运动,设点P运动的时间为t秒.
(1)求点A,B的坐标;
(2)设△OPQ的面积为S,求S关于t的函数解析式;
(3)当PO=PQ时,请直接写出tan∠AOP的值;
(4)在点P,Q运动的过程中,在平面直角坐标系内是否存在点N,使以点A,P,Q,N为顶点的四边形是矩形?若存在,求直接写出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案