精英家教网 > 初中数学 > 题目详情
17.如图,在平面直角坐标系xOy中,抛物线y=x2-(1-m)x+3m经过点A(-1,0),且与y轴相交于点B.
(1)求这条抛物线的表达式及点B的坐标;
(2)设点C是所求抛物线上一点,线段BC与x轴正半轴相交于点D,如果$\frac{BD}{CD}$=$\frac{3}{5}$,求点C的坐标;
(3)在(2)条件下,联结AC,求∠ABC的度数.

分析 (1)把A(-1,0)代入y=x2-(1-m)x+3m得到m=-1,于是得到结论;
(2)过C作CE⊥x轴于E,则CE∥y轴,根据相似三角形的性质得到$\frac{OD}{DE}$=$\frac{3}{CE}$=$\frac{3}{5}$,得到CE=5,把y=5代入y=x2-2x-3即可得到结论;
(3)解方程x2-2x-3=0得到x1=-1,x2=3,根据勾股定理得到AC2=(4+1)2+52=50,DE=$\frac{5}{2}$,DC=$\sqrt{(\frac{5}{2})^{2}+{5}^{2}}$=$\frac{5\sqrt{5}}{2}$,BC=$\sqrt{(5+3)^{2}+{4}^{2}}$=4$\sqrt{5}$,根据相似三角形的性质即可得到结论.

解答 解:(1)把A(-1,0)代入y=x2-(1-m)x+3m得:0=(-1)2+(1-m)+3m,
解得:m=-1,
∴抛物线的表达式y=x2-2x-3,当x=0时,y=-3,
∴B的坐标为(0,-3);
(2)过C作CE⊥x轴于E,则CE∥y轴,
∴△BDO∽△CDE,
∴$\frac{BD}{CD}$=$\frac{BO}{CE}$=$\frac{OD}{DE}$,即$\frac{OD}{DE}$=$\frac{3}{CE}$=$\frac{3}{5}$,
∴CE=5,
把y=5代入y=x2-2x-3得:x1=-2(舍去),x2=4,
∴C(4,5);
(3)解方程x2-2x-3=0得:x1=-1,x2=3,
∴A(-1,0),
∵B(0,-3),C(4,5),
∴AC2=(4+1)2+52=50,
∵$\frac{OD}{DE}$=$\frac{3}{5}$,OD+DE=4,
∴DE=$\frac{5}{2}$,
∴DC=$\sqrt{(\frac{5}{2})^{2}+{5}^{2}}$=$\frac{5\sqrt{5}}{2}$,BC=$\sqrt{(5+3)^{2}+{4}^{2}}$=4$\sqrt{5}$,
∴DC•BC=50,
∴AC2=DC•BC,
∵∠ACD=∠BCA,
∴△CDA∽△CBA,
∴∠ABC=∠CAD,
∵CE=AE=5,
∴∠CAD=45°,
∴∠ABC=45°.

点评 本题考查了相似三角形的判定和性质,勾股定理,待定系数法确定函数关系式,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.小明在解决一个关于计算机病毒传播的问题时,设计算机有x台,列方程3+x+x(x+3)=48,则方程的解中一定不合题意的是(  )
A.5B.9C.-5D.-9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知以(0,4)为圆心的⊙M与直线l:y=-$\sqrt{3}$x相切,从相切处开始,⊙M以每秒1个单位的速度沿y轴某一方向匀速运动.
(1)⊙M的半径是2.
(2)若⊙M在运动过程中截直线l所得的弦长为$\frac{12}{5}$,求⊙M的运动时间.
(3)若直线l同时以每秒$\sqrt{3}$个单位的速度沿x轴正方向运动,求⊙M与直线l再次相切时圆心的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.由六个相同的立方体搭成的几何体如图所示,下面有关它的三个视图的说法正确的是(  )
A.左视图与主视图相同B.俯视图与主视图相同
C.左视图与俯视图相同D.三个视图都相同

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,已知⊙O的直径为10,锐角△ABC内接于⊙O,BC=8,则∠A的正切值等于(  )
A.$\frac{4}{3}$B.$\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{3}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知抛物线y=x2-2x-3的大致图象如图所示,与x轴交于A,B两点(A在B左侧),与y轴交于C点,E点在抛物线对称轴上,纵坐标为-3,在该抛物线上有一点D,x轴上有一点F,若以A、E、F、D为顶点的四边形为平行四边形.求符合条件的F点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.已知圆形纸片⊙O的直径为2,将其沿着两条互相垂直的直径折叠,得到四层的扇形,将最上的一层“撑”开来,“鼓”成一个无底的圆锥,则这个圆锥的高是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知抛物线y=一x2+2x+3与坐标轴交于A,B,C三点,抛物线上的点D与点C关于它的对称轴对称.
(1)直接写出点D的坐标和直线AD的解析式;
(2)点E是抛物线上位于直线AD上方的动点,过点E分别作EF∥x轴,EG∥y轴并交直线AD于点F、G,求△EFG周长的最大值;
(3)若点P为y轴上的动点,则在抛物线上是否存在点Q,使得以A,D,P,Q为顶点的四边形是平行四边形?若存在,请求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知在△ABC中,∠B=90°,tan∠BAC=$\frac{1}{2}$,半径是2的⊙O沿AB向右滚动,滚动时始终与AB相切,切点为点D.过O点作OG⊥AC于点G.
(1)如图1,⊙O从点A开始,即点D与点A重合时,求OG的长;
(2)如图2,当圆心O落在AC边上时滚动停止,此时⊙O与BC相切,求BC的长;
(3)如图3,在⊙O滚动过程中,设AD=x,请用含x的代数式表示OG,并直接写出线段OG长度的最值.

查看答案和解析>>

同步练习册答案