【题目】如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.
(1)求证:AD⊥BF;
(2)若BF=BC,求∠ADC的度数.
【答案】
(1)证明:如图,连结DB、DF.
∵四边形ABCD,ADEF都是菱形,
∴AB=BC=CD=DA,AD=DE=EF=FA.
在△BAD与△FAD中,
,
∴△BAD≌△FAD,
∴DB=DF,
∴D在线段BF的垂直平分线上,
∵AB=AF,
∴A在线段BF的垂直平分线上,
∴AD是线段BF的垂直平分线,
∴AD⊥BF;
(2)如图,设AD⊥BF于H,作DG⊥BC于G,则四边形BGDH是矩形,
∴DG=BH= BF.
∵BF=BC,BC=CD,
∴DG= CD.
在直角△CDG中,∵∠CGD=90°,DG= CD,
∴∠C=30°,
∵BC∥AD,
∴∠ADC=180°﹣∠C=150°.
【解析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS证明△BAD≌△FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又AB=AF,即A在线段BF的垂直平分线上,进而证明AD⊥BF;(2)设AD⊥BF于H,作DG⊥BC于G,证明DG= CD.在直角△CDG中得出∠C=30°,再根据平行线的性质即可求出∠ADC=180°﹣∠C=150°.
科目:初中数学 来源: 题型:
【题目】如图,DB∥AC,且DB= AC,E是AC的中点,
(1)求证:BC=DE;
(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.
(1)m= %,这次共抽取 名学生进行调查;并补全条形图;
(2)在这次抽样调查中,采用哪种上学方式的人数最多?
(3)如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.
(1)点A对应的数是 ,点B对应的数是 .
(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.
①用含t的代数式表示点P对应的数是 ,点Q对应的数是 ;
②当点P和点Q间的距离为8个单位长度时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,的垂直平分线交于点,交的延长线于点.
(1)若,则为 度;
(2)如果(),其余条件不变,求的度数;
(3)补全规律:等腰三角形一腰的垂直平分线与 相交所成的锐角等于 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O(0,0),A(0,1)是正方形的两个顶点,以对角线为边作正方形,再以正方形的对角线作正方形,…,依此规律,则点的坐标是( )
A. (-8,0) B. (0,8)
C. (0,8) D. (0,16)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点.
(1)求该二次函数的解析式;
(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;
(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2 , 求S1﹣S2的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com