精英家教网 > 初中数学 > 题目详情

(2013年四川泸州8分)如图,已知函数与反比例函数(x>0)的图象交于点A.将的图象向下平移6个单位后与双曲线交于点B,与x轴交于点C.

(1)求点C的坐标;
(2)若,求反比例函数的解析式.

解:(1)∵的图象向下平移6个单位后与双曲线交于点B,与x轴交于点C,

∴直线BC的解析式为
把y=0代入得,解得x=
∴C点坐标为(,0)。
(2)作AE⊥x轴于E点,BF⊥x轴于F点,如图,
∵OA∥BC,∴∠AOB=∠BCF。
∴Rt△OAE∽△RtCBF。∴
设A点坐标为(a,),则OE=a,AE=
∴CF=,BF=。∴OF=OC+CF=
∴B点坐标为()。
∵点A与点B在的图象上,
,解得a=3。∴点A的坐标为(3,4)。
把A(3,4)代入得k=3×4=12。
∴反比例函数的解析式为

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

为了预防流感,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图),现测药物8分钟燃毕,此时空气中每立方米含药量为6毫克,请根据题中所提供的信息,回答下列问题

(1)药物燃烧时,y关于x的函数关系式为         ,自变量x的取值范围是      ;药物燃烧完后,y与x的函数关系式为         
(2)研究表明,当空气中的每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室.
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效地杀灭空气中的病菌,那么此次消毒是否有效?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知反比例函数(k为常数,k≠0)的图象经过点A(2,3).
(1)求这个函数的解析式;
(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;
(3)当-3<x<-1时,求y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数的图象有一个交点A(m,2).

(1)求m的值;
(2)求正比例函数y=kx的解析式;
(3)试判断点B(2,3)是否在正比例函数图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,直线y=k1x+b交x轴于点A(-3,0),交y轴于点B(0,2),并与的图象在第一象限交于点C,CD⊥x轴,垂足为D,OB是△ACD的中位线。

(1)求一次函数与反比例函数的解析式;
(2)若点是点C关于y轴的对称点,请求出△的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某公司从2009年开始投入技术改造资金,经技术改进后,其产品的生产成本不断降低,具体数据如表:

年度
2009
2010
2011
2012
投入技改资金x(万元)
2.5
3
4
4.5
产品成本y(万元/件)
7.2
6
4.5
4
(1)试判断:从上表中的数据看出,y与x符合你学过的哪个函数模型?请说明理由,并写出它的解析式.
(2)按照上述函数模型,若2013年已投入技改资金5万元
①预计生产成本每件比2012年降低多少元?
②如果打算在2013年把每件产品的成本降低到3.2万元,则还需投入技改资金多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,直线AB与y轴、x轴分别交于点A、点B,与双曲线交于点C(1,6)、D(3,n)两点,轴于点E,轴于点F.

(1)填空:
(2)求直线AB的解析式;
(3)求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:计算题

为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的一个游戏:口袋中有编号分别为1、2、3的红球三个和编号为4的白球一个,四个球除了颜色或编号不同外,没有任何别的区别,摸球之前将小球搅匀,摸球的人都蒙上眼睛.先甲无放回摸两次,每次摸出一个球;再把甲摸出的两个球同时放回口袋后,乙再摸,乙只摸一个球.如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分;如果乙摸出的球是白色,乙得1分,否则,乙得0分 ;得分高的获得入场券,如果得分相同,游戏重来.
(1)(4分)运用列表或画树状图求甲得1分的概率;
(2)(4分)这个游戏是否公平?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

下列四个图中,∠1和∠2是对顶角的图的个数是(  )

A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案