精英家教网 > 初中数学 > 题目详情

在半径不相等的⊙O1和⊙O2中,所对的圆心角都是60°,则下列说法中正确的是

[  ]

A.的弧长相等

B.的度数相等

C.的弧长和度数都相等

D.的弧长和度数不相等

答案:B
解析:

圆心角相等,所对的弧的度数相等,但所对的弧、弦的长度不一定相等.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;
(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在平面直角坐标系中⊙O1交x轴于A、B,交y轴于C,CD∥AB交⊙O1于D.
(1)判断四边形ABCD的形状并证明.
(2)如图②,若A(4,0),B(-3,0)且以OC为直径的半圆⊙O2与AD相切于E,求点C的坐标及⊙O1的半径.
(3)如图③,若A(6,0),B(-2,0),C(0,4),问是否存在直线将四边形ABCD分成两个四边形,使其面积相等且有一个图形为等腰梯形?若存在,请求出直线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:三点一测丛书九年级数学上 题型:044

(1)操作并观察:如图中,两个半径为r的半圆O1O2外切于点P,将三角板的直角顶点放在点P,再将三角板绕点P旋转,使三角板的两直角边中的一边PA与O1相交于A,另一边PB与O2相交于B(转动中直角边与两圆都不相切),在转动过程中,线段AB的长与半径r之间有什么关系?请说明理由.

(2)如图中,设O1O2的半径不相等,O1O2仍是外切于点P.设O1的半径为R,O2的半径为r(R>r),重复(1)中的操作过程,观察并分析线段AB与R、r之间有怎样的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(四川成都卷)数学解析版 题型:解答题

(2011•成都)某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;
(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.

查看答案和解析>>

同步练习册答案