【题目】下列五个命题中的真命题有( )
①两条直线被第三条直线所截,同位角相等;②三角形的一个外角等于它的两个内角之和;③两边分别相等且一组内角相等的两个三角形全等;④有理数与数轴上的点一一对应;⑤实数分为有理数、无理数.
A.1个B.2个C.3个D.4个
【答案】A
【解析】
判断一个命题是假命题,举出一个反例就可以;分别对各个命题进行判断,假命题的举出反例,即可得出答案.
解:①两条直线被第三条直线所截,同位角相等;是假命题;
如图1所示:
两条直线AB、CD被直线EF所截,
很明显,∠BME≠∠DNE;
∴①是假命题;
②三角形的一个外角等于它的两个内角之和;是假命题;
如图2所示:
∠ACD是Rt△ABC的一个外角,∠ACD=∠ACB=90°,
而∠ACD≠∠ACB+∠A,
∴②是假命题;
③两边分别相等且一组夹角相等的两个三角形全等,是假命题;
如图3所示:
△ACD和△ACB中,AC=AC,CD=CB,∠A=∠A,
而△ACD与△ACB不全等
∴③是假命题;
④有理数与数轴上的点一一对应,是假命题;
根据实数与数轴上的点的关系,实数与数轴上的点一一对应
∴④是假命题;
⑤实数分为有理数、无理数,是真命题
有理数和无理数统称为实数
∴⑤是真命题
真命题共1个
故选:A.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.
(1)求证:四边形CEDF是平行四边形;
(2)①当AE= cm时,四边形CEDF是矩形;②当AE= cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是( )
A. AD+BC=AB B. 与∠CBO互余的角有两个
C. ∠AOB=90° D. 点O是CD的中点
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点A,B,C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′
(2)三角形ABC的面积为 ;
(3)在直线l上找一点P,使PA+PB的长最短.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=―x2+(6―
)x+m―3与x轴交于A(x1,0)、B(x2,0)两点(x1<x2),交y轴于C点,且x1+x2=0。
(1)求抛物线的解析式,并写出顶点坐标及对称轴方程。
(2)在抛物线上是否存在一点P使△PBC≌△OBC,若存在,求出点P的坐标,若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】勾股定理在平面几何中有着不可替代的重要地位,在我国古算书(周髀算经》中就有“若勾三,股四,则弦五”的记载,如图1是由边长均为1的小正方形和Rt△ABC构成的,可以用其面积关系验证勾股定理,将图1按图2所示“嵌入”长方形LMJK,则该长方形的面积为( )
A.120B.110C.100D.90
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=DE;③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED的条件是______________.(填写序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数的图像与正比例函数
的图像都经过点
,点
在反比例函数
的图像上,点
在正比例函数
的图像上.
(1)求此正比例函数的解析式;
(2)求线段AB的长;
(3)求△PAB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com