【题目】甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发驶向乙地。如图,线段OA表示货车离甲地的距离(km)与时间(h)之间的函数关系,折线BCDE变式轿车离甲地的距离(km)与时间(h)之间的函数关系。根据图像,解答下列问题:
(1)线段CD表示轿车在途中停留了 h.
(2)求线段DE对应的函数关系式(2.5≤x≤4.5).
(3)求轿车从甲地出发后经过多长时间追上货车.
【答案】(1)0.5;(2);(3)2.9
【解析】
(1)利用图象得出CD这段时间为2.5-2=0.5,得出答案即可;
(2)利用D点坐标为:(2.5,80),E点坐标为:(4.5,300),求出函数解析式即可;
(3)利用OA的解析式得出,当60x=110x-195时,即可求出轿车追上货车的时间.
解:(1)利用图象可得:线段CD表示轿车在途中停留了:2.5-2=0.5小时;
(2)根据D点坐标为:(2.5,80),E点坐标为:(4.5,300),
代入y=kx+b,得:
,
解得:,
故线段DE对应的函数解析式为:y=110x-195(2.5≤x≤4.5);
(3)∵A点坐标为:(5,300),
代入解析式y=ax得,
300=5a,
解得:a=60,
故y=60x,当60x=110x-195,
解得:x=3.9,故3.9-1=2.9(小时),
答:轿车从甲地出发后经过2.9小时追上货车.
科目:初中数学 来源: 题型:
【题目】定义:对于任何数a,符号[a]表示不大于a的最大整数.
例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.
(1)[﹣]= ;
(2)如果[a]=3,那么a的取值范围是 ;
(3)如果[]=﹣3,求满足条件的所有整数x.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:用3辆A型车和2辆B型车载满货物一次可运货共19吨;用2辆A型车和3辆B型车载满货物一次可运货共21吨.
(1)1辆A型车和1辆B型车都载满货物一次分别可以运货多少吨?
(2)某物流公司现有49吨货物,计划同时租用A型车辆,B型车辆,一次运完,且恰好每辆车都载满货物.
①求、的值;
②若A型车每辆需租金130元/次,B型车每辆需租金200元/次.请求出租车费用最少是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若将一幅三角板按如图所示的方式放置,则下列结论中不正确的是( )
A. ∠1=∠3 B. 如果∠2=30°,则有AC∥DE
C. 如果∠2=30°,则有BC∥AD D. 如果∠2=30°,必有∠4=∠C
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y= x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点M的坐标及△ACM的最小周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和25,则△EDF的面积为( )
A. 35B. 25C. 15D. 12.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△DEF中,DE=DF,点B在EF边上,且∠EBD=60°,C是射线BD上的一个动点(不与点B重合,且BC≠BE),在射线BE上截取BA=BC,连接AC.
(1)当点C在线段BD上时,
①若点C与点D重合,请根据题意补全图1,并直接写出线段AE与BF的数量关系为________;
②如图2,若点C不与点D重合,请证明AE=BF+CD;
(2)当点C在线段BD的延长线上时,用等式表示线段AE,BF,CD之间的数量关系,不用证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com