精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(10),点D的坐标为(02)延长CBx轴于点A1,作正方形A1B1C1C;延长C1B1x 轴于点A2,作正方形A2B2C2C1按这样的规律进行下去,第2018个正方形的面积为_____

【答案】2017

【解析】

根据勾股定理求出AB,证明ABA1∽△DOA,根据相似三角形的性质求出A1B,计算求出A1C,根据正方形的面积公式求出正方形A1B1C1C的面积,总结规律,根据规律计算即可.

∵点A的坐标为(10),点D的坐标为(02),

OA=1OD=2

∵∠AOD=90°

AB=AD==,∠ODA+OAD=90°

∵四边形ABCD是正方形,

∴∠BAD=ABC=90°S正方形ABCD=5

∴∠ABA1=90°,∠OAD+BAA1=90°

∴∠ODA=BAA1

RtABA1RtDOA

,即

解得,A1B=

A1C=

则正方形A1B1C1C的面积=2=5×

同理,正方形A2B2C2C1的面积=5×2

则第2018个正方形的面积为2017

故答案为:2017

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在RtABC中,∠C90°,AC8cmBC6cm,点PB出发沿BA方向向点A匀速运动,速度为1cm/s;点QA出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为ts)(0t4),解答下列问题:

1)当t为何值时,PQBC

2)设△AQP的面积为ycm2),求yt之间的函数关系式;

3)是否存在某一时刻t,使线段PQ恰好把RtACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;

4)如图,连接PC,并把△PQC沿QC翻折,得到四边形PQPC,那么是否存在某一时刻t,使四边形PQPC为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在的正方形方格中,每个小正方形的边长都为1,顶点都在网格线交点处的三角形, 是一个格点三角形.

在图中,请判断是否相似,并说明理由;

在图中,以O为位似中心,再画一个格点三角形,使它与的位似比为21

在图中,请画出所有满足条件的格点三角形,它与相似,且有一条公共边和一个公共角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCD的对角线相交于点O点E在边BC的延长线上且OE=OB连接DE

1求证:DEBE;

2如果OECD求证:BD·CE=CD·DE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,,EOB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.

(1)求证:直线BF是⊙O的切线;

(2)若OB=2,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AMABC的中线,点D是线段AM上一点(不与点A重合).过点DKDAB,交BC于点K,过点CCEAM,交KD的延长线于点E,连接AEBD

1)求证:ABM∽△EKC

2)求证:ABCKEKCM

3)判断线段BDAE的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,A14)、B31)、C97)、D131),若以CD为边的三角形与OAB位似,则这两个三角形的位似中心为(  )

A. (0,0) B. (3,4)或(﹣62

C. (5,3)或(-7,1 D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.

(1)求y1的解析式;

(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在网格中的位置如图所示(每个小正方形边长为1),ADBCD,下列选项中,错误的是(  )

A. sinαcosα B. tanC2 C. sinβ D. tanα1

查看答案和解析>>

同步练习册答案