精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠ABC90°,∠BAC30°,BC2,点DAC边的中点,E是直线BC上一动点,将线段DE绕点D逆时针旋转90°得到线段DF,连接AFEF,在点E的运动过程中线段AF的最小值为_____

【答案】+1

【解析】

如图,作DMBCMFJDMJABN.首先说明点F在直线l上运动(直线l与直线AB之间的距离为),根据垂线段最短可知,当AF⊥直线l时,AF的值最短,最小值为.

解:如图,作DM⊥BCMFJ⊥DMJABN

∵Rt△ABC中,∠ABC90°∠BAC30°BC2

∴AC2BC4ABBC2

∵ADDCDM∥AB

∴DMABBMCM1

易证四边形BMJN是矩形,

∴JNBM1

∵∠FDJ+∠EDM90°∠EDM+∠DEM90°

∴∠FDJ∠DEM∵∠FJD∠DME90°

∴△FJD≌△DME(AAS)

∴FJDM

∴FNFJ+JN1+

F在直线l上运动(直线l与直线AB之间的距离为+1)

根据垂线段最短可知,当AF⊥直线l时,AF的值最短,最小值为:+1

故答案为:+1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于平面内的点 P 和图形 M,给出如下定义:以点 P 为圆心,以 r 为半径作⊙P,使得图形 M 上的所有点都在⊙P 的内部(或边上),当 r 最小时,称⊙P 为图形 M P 控制圆,此时,⊙P 的半径称为图形 M P 点控制半径.已知,在平面直角坐标系中, 正方形 OABC 的位置如图所示,其中点 B22

1)已知点 D10),正方形 OABC D 点控制半径为 r1,正方形 OABC A 控制半径为 r2,请比较大小:r1 r2

2)连接 OB,点 F 是线段 OB 上的点,直线 ly= x+b;若存在正方形 OABC F点控制圆与直线 l 有两个交点,求 b 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形纸片ABCD中,已知AD=8AB=6E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】目前世界上最高的电视塔是广州新电视塔.如图所示,新电视塔高AB610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°

1)求大楼与电视塔之间的距离AC

2)求大楼的高度CD(精确到1米).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,以为直径的于点

1)判断的位置关系,并说明理由;

2)求证:

3)在上取一点,若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】合与实践﹣﹣探究图形中角之间的等量关系及相关问题.

问题情境:

正方形ABCD中,点P是射线DB上的一个动点,过点CCEAP于点E,点Q与点P关于点E对称,连接CQ,设∠DAPα(0°<α135°),∠QCEβ

初步探究:

(1)如图1,为探究αβ的关系,勤思小组的同学画出了0°<α45°时的情形,射线AP与边CD交于点F.他们得出此时αβ的关系是β.借助这一结论可得当点Q恰好落在线段BC的延长线上(如图2)时,α   °,β   °;

深入探究:

(2)敏学小组的同学画出45°<α90°时的图形如图3,射线AP与边BC交于点G.请猜想此时αβ之间的等量关系,并证明结论;

拓展延伸:

(3)请你借助图4进一步探究:90°<α135°时,αβ之间的等量关系为   

已知正方形边长为2,在点P运动过程中,当αβ时,PQ的长为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yax2+bx+c经过A(﹣10)、B50)、C0,﹣5)三点.

1)求抛物线的解析式和顶点坐标;

2)当0x5时,y的取值范围为   

3)点P为抛物线上一点,若SPAB21,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(-40)B(03),一次函数与坐标轴分别交于CD两点,GCD上一点,且DGCG12,连接BG,当BG平分∠ABO时,则b的值为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线x轴负半轴相交于点A,与y轴正半轴相交于点B,直线lAB两点,点D为线段AB上一动点,过点D轴于点C,交抛物线于点E

1)求抛物线的解析式;

2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出Sx的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由.

3)连接BE,是否存在点D,使得相似?若存在,求出点D的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案