精英家教网 > 初中数学 > 题目详情

【题目】如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若SDOE:SCOA=1:25,则SBDE与SCDE的比是(

A.1:3
B.1:4
C.1:5
D.1:25

【答案】B
【解析】解:∵DE∥AC,∴△DOE∽△COA,又SDOE:SCOA=1:25,
=
∵DE∥AC,
= =
=
∴SBDE与SCDE的比是1:4,
故选:B.
【考点精析】解答此题的关键在于理解相似三角形的判定与性质的相关知识,掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同,小明先从盒子里随机取出一个小球,记下数字为x,放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.
(1)用列表法或画树形图表示出(x,y)的所有可能出现的结果;
(2)求小明、小华各取一次小球所确定的点(x,y)落在二次函数y=x2的图象上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地欲搭建一桥,桥的底部两端间的距离AB=L,称跨度,桥面最高点到AB的距离CD=h称拱高,当L和h确定时,有两种设计方案可供选择:①抛物线型,②圆弧型.已知这座桥的跨度L=32米,拱高h=8米.

(1)如果设计成抛物线型,以AB所在直线为x轴,AB的垂直平分线为y轴建立坐标系,求桥拱的函数解析式;
(2)如果设计成圆弧型,求该圆弧所在圆的半径;
(3)在距离桥的一端4米处欲立一桥墩EF支撑,在两种方案中分别求桥墩的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用两种方法解下列方程
x2+8x+15=0
配方法:
公式法:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的纸箱里装有3个标号为1,2,﹣3的小球,它们的材质、形状、大小完全相同,小红从纸箱里随机取出一个小球,记下数字为x,小刚从剩下的2个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).
(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;
(2)求点(x,y)在函数y=﹣ 图象上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知C是线段AB的中点,D是线段BC的中点,E是线段AD的中点,F是线段AE的中点,那么线段AF与线段AC的长度比为(  )

A. 18 B. 14 C. 38 D. 316

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课本中有一个例题:
有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?
这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2
我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:

(1)若AB为1m,求此时窗户的透光面积?
(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某车间20名工人日加工零件数如表所示:

日加工零件数

4

5

6

7

8

人数

2

6

5

4

3

这些工人日加工零件数的众数、中位数、平均数分别是(
A.5、6、5
B.5、5、6
C.6、5、6
D.5、6、6

查看答案和解析>>

同步练习册答案