分析 连接AD,由AB=AC,D为BC中点,利用等腰三角形的“三线合一”性质得到AD为顶角的平分线,由DE与AB垂直,DF与AC垂直,根据角平分线上的点到角两边的距离相等即可得到DE=DF,得证.
解答 证明:方法一:连接AD,
∵AB=AC,D是BC中点,
∴AD为∠BAC的角平分线(三线合一的性质),
又∵DE⊥AB,DF⊥AC,
∴DE=DF(角平分线上的点到角的两边相等).
方法二:∵AB=AC,
∴∠B=∠C,
∵DE⊥AB,DF⊥AC,
∴∠BED=∠DFC=90°
∵D是BC的中点,
∴BD=CD,
在△BED与△DFC中,
$\left\{\begin{array}{l}{∠BED=∠DFC}\\{∠B=∠C}\\{BD=CD}\end{array}\right.$,
∴△BED≌△DFC(AAS),
∴DE=DF.
点评 本题主要考查等腰三角形的性质的应用,关键是掌握等腰三角形的腰相等且底边上的两个角相等,及角平分线上的点到角两边的距离相等.同时要求学生必须熟练掌握判定全等三角形的几个定理.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com