精英家教网 > 初中数学 > 题目详情

【题目】方程2x﹣1=3x+2的解为(
A.x=1
B.x=﹣1
C.x=3
D.x=﹣3

【答案】D
【解析】解:方程2x﹣1=3x+2, 移项得:2x﹣3x=2+1,
合并得:﹣x=3.
解得:x=﹣3,
故选D.
方程移项合并,把x系数化为1,即可求出解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,求:

(1) FN的长;

(2) EN的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在七年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,如图是六个兴趣小组不完整的频数分布直方图和扇形统计图.根据图中信息,可得下列结论不正确的是(

A.七年级共有320人参加了兴趣小组
B.体育兴趣小组对应扇形圆心角的度数为96°
C.美术兴趣小组对应扇形圆心角的度数为72°
D.各小组人数组成的数据写作组人数最少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列结论中正确的是( )

A. 0既是正数,又是负数 B. O是最小的正数

C. 0是最大的负数 D. 0既不是正数,也不是负数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,已知:在ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.

(2)如图2,将(1)中的条件改为:在ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA=AEC=BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请给出证明;若不成立,请说明理由.

(3)拓展与应用:如图3,D、ED、A、E三点所在直线m上的两动点(D、A、E三点

互不重合),点F为∠BAC平分线上的一点,且ABFACF均为等边三角形,连接BD、CE,若∠BDA=AEC=BAC,试判断DEF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2).
图(1)

图(2)
(1)请根据所给信息在图(1)中将表示“乒乓球”项目的图形补充完整。
(2)扇形统计图(2)中表示“足球”项目扇形的圆心角度数为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整).请根据图中提供的信息解答下列问题:

(1)在这次调查中,一共抽取了多少名学生?
(2)通过计算补全条形统计图;
(3)在扇形统计图中,“公交车”部分所对应的圆心角是多少度?
(4)若全校有1600名学生,估计该校乘坐私家车上学的学生约有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).

(1)求二次函数的解析式;

(2)在抛物线上存在点P,满足SAOP=8,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).

(1)写出点A,B的坐标:
A()、B(
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′()、B′()、C′().
(3)△ABC的面积为

查看答案和解析>>

同步练习册答案