精英家教网 > 初中数学 > 题目详情

【题目】点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠FAE=∠FAD,FE=FD.

(1)如图1,若∠AEF=∠ADF,求证:AE=AD;

(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;

(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.

【答案】(1)见解析;(2);(3).

【解析】

1)证明△AEF≌△ADF,根据全等三角形的对应边相等证明结论;
2)过点F分别作ABBCAC边上的高,根据角平分线的性质定理得到FP=FQFP=FN,根据角平分线的判定定理得到CF平分∠ACB,证明RtPEFRtNDF,根据全等三角形的性质得到∠PEF=FDN,计算得到答案;
3)在BC上取点R,使CR=CA,分别证明△CAF≌△CRF、△BGF≌△BRF,根据全等三角形的性质、三角形的周长公式计算即可.

1.

.

2)过点分别作边上的高,,点为垂足.

分别平分

,且平分.

.

.

.

.

3)在上取点,使

.

.

.

.

.

.

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCACD中,∠B=D,tanB=,BC=5,CD=3,BCA=90°﹣BCD,则AD=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】合肥市某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在2030之间(包括2030),且四人间的数量是双人间的5.

(1)2015年学校寝室数为64,2017年建成后寝室数为121,20152017年的平均增长率;

(2)若建成后的寝室可供600人住宿,求单人间的数量;

(3)若该校今年建造三类不同的寝室的总数为180,则该校的寝室建成后最多可供多少师生住宿?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为(

A. 20 B. 24 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系内,已知点P33),A0b)是y轴上一点,过PPA的垂线交x轴于Ba0),则称Qab)为点P的一个关联点。

1)写出点P的不同的两个关联点的坐标是

2)若点P的关联点Qxy)满足5x-3y=14,求出Q点坐标;

3)已知C-1-1)。若点A、点B均在所在坐标轴的正半轴上运动,求CAB的面积最大值,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10,出厂价为每件12,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-10x+500

1)李明在开始创业的第一个月将销售单价定为20,那么政府这个月为他承担的总差价为多少元?

2设李明获得的利润为W(元),当销售单价定为多少元时,每月可获得最大利润?

3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000,那么政府为他承担的总差价最少为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,过点C作CE⊥BC交对角线BD于点E,且DE=CE,若,则DE=_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线经过A(﹣4,0)、B(0,﹣4)、C(2,0)三点若点M为第三象限内抛物线上一动点,△AMB的面积为SS的最大值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】7分)如图所示,O是直线AB上一点,∠AOC=∠BOCOC∠AOD的平分线.

1)求∠COD的度数.

2)判断ODAB的位置关系,并说出理由.

查看答案和解析>>

同步练习册答案