【题目】已知为互不相等的整数,且,则___________.
【答案】4或1
【解析】
找出4的所有因数,然后对a、b、c进行分类讨论即可.
解:4的所有因数为:±1,±2,±4,
由于abc=-4,且a、b、c是互不相等的整数,
①当c=4时,
∴ab=-1,
∴a=1,b=-1或a=1,b=1,a+b+c=4,
②当c=4时,
∴ab=1,
∴a=1,b=1或a=1,b=-1,不符合题意,舍去,
③当c=2时,
∴ab=-2,
∴a=-1,b=2,或a=2,b=-1,不符合题意,舍去,
a=1,b=-2或,或a=-2,b=1,
∴a+b+c=1
④当c=2时,
∴ab=2,
∴a=-1,b=-2或a=-2,b=-1,不符合题意舍去,
a=1,b=2或a=2,b=1,
∴a+b+c=1,
⑤当c=1时,
ab=-4,
∴a=1,b=-4或a=-4,b=1,不符合题意舍去,
a=1,b=4或a=4,b=1
∴a+b+c=4,
a=2,b=-2或a=2,b=2,a+b+c=1
⑥当c=1时,
∴ab=4,
∴a=2,b=2或a=2,b=-2,不符合题意舍去
a=1,b=-4或a=-4,b=1,不符合题意舍去,
综上所述, a+b+c=1或4
故答案为4或1.
科目:初中数学 来源: 题型:
【题目】在长方形纸片ABCD中,AB=m,AD=n,将两张边长分别为6和4的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.
(1)在图1中,EF=___,BF=____;(用含m的式子表示)
(2)请用含m、n的式子表示图1,图2中的S1,S2,若m-n=2,请问S2-S1的值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.
(1)求证:四边形CODE是矩形.
(2)若AB=5,AC=6,求四边形CODE的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2.
(1)求实数k的取值范围.
(2)若方程两实根x1、x2满足x1+x2=﹣x1x2,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E,连接AG.
(1)求证:AG=CG;
(2)求证:AG2=GE·GF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.
(1)求证:四边形ADEF为平行四边形;
(2)当点D为AB中点时,判断ADEF的形状;
(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.
(1)求证:DE是⊙O的切线;
(2)若AE:EB=1:2,BC=6,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】ABCD中,对角线AC与BD相交于点E,将△ABC沿AC所在直线翻折至△AB′C,若点B的落点记为B′,连接B′D、B′C,其中B′C与AD相交于点G.
①△AGC是等腰三角形;②△B′ED是等腰三角形;
③△B′GD是等腰三角形;④AC∥B′D;
⑤若∠AEB=45°,BD=2,则DB′的长为;
其中正确的有( )个.
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆出租车从A地出发,在一条东西走向的街道上往返行驶,每次行驶的路程(记向东为正)记录如下(6<x<14,单位:km):
(1)说出这辆出租车每次行驶的方向;
(2)这辆出租车一共行驶了多少路程?
(3)这辆出租车第四次行驶后距离A地多少千米?在A地的什么方向?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com