精英家教网 > 初中数学 > 题目详情
在△ABBC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,求证:BF=
1
2
FC.
考点:含30度角的直角三角形
专题:证明题
分析:连接AF,结合条件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性质即可得到AF=BF=
1
2
CF.
解答:证明:连接AF,
∵EF为AB的垂直平分线,
∴AF=BF,
又∵AB=AC,∠BAC=120°,
∴∠B=∠C=∠BAF=30°,
∴∠FAC=90°,
∴AF=
1
2
FC,
∴BF=
1
2
FC.
点评:本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若|m|=2,|n|=4,且m>0,n<0,则m-n=(  )
A、-2B、2C、6D、-6

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=x2-2x+m与x轴交于,B两点,与y轴交于点C(0,-3).
(1)求抛物线的解析式;
(2)若在第四象限的抛物线上存在点P,使△PBC为以点C为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使四边形BCPQ为直角梯形?若存在,请求出Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,二次函数y=-x2+2(m-2)x+3的图象与x,y轴交于A,B,C三点,其中A(3,0),抛物线的顶点为D.
(1)求m的值及顶点D的坐标.
(2)连接AD,CD,CA,求△ACD外接圆圆心E的坐标和半径;
(3)当-
1
2
≤x≤n时,函数y所取得的最大值为4,最小值为1
3
4
,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的二次函数y=mx2+2mx+n的图象经过A(-3,0),C(0,-6).
(1)求抛物线的对称轴及解析式;
(2)设二次函数与x轴的另一个交点为B,过点O作CB的垂线与抛物线交于点M,求M点的坐标;
(3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分不变,得到一个新的图象,请结合新图象回答:当直线y=x+b与这个新图象有两个公共点时,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在锐角△ABC中,tanB=
3
4
,AB=5,BC=6,求△ABC的内切圆O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知梯形ABCD中,AD∥BC,∠C=90°,以CD为直径的圆与AB相切,AB=6,那么梯形ABCD的面积是(  )
A、2B、3
C、4D、不能确定,与∠B的大小有关

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,我们知道,若点C将切断AB分成两部分,且
AC
AB
=
BC
AC
,则称点C为线段AB的黄金分割点.类似地,我们可以给出“黄金分割点”的定义:若直线l将一个面积为S的图形分成两部分S1,S2,且
S1
S
=
S2
S1
,则称直线l为该图形的黄金分割线.
(1)如图2,在△ABC中,若点D为AB边上的黄金分割点(靠近B),则直线CD是△ABC的黄金分割线吗?为什么?
(2)如图3,在△ABC中,D为AB的黄金分割点(靠近B),过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,则直线EF也为△ABC的黄金分割线,请你说明理由.
(3)如图4,四边形ABCD中,点E为AC的一个黄金分割点(靠近A),请你画出四边形ABCD的一条黄金分割线,简单写出画法步骤,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

方程组
2x+3y=1
x+2y=3
的解为
 

查看答案和解析>>

同步练习册答案