精英家教网 > 初中数学 > 题目详情

【题目】某小组在“用频率估计概率”的实验中,统计了某种频率结果出现的频率,绘制了如图所示的折线统计图,那么符合这一结果的实验最有可能的是(  )

A. 掷一枚质地均匀的硬币,落地时结果是“正面向上”

B. 掷一个质地均匀的正六面体骰子,落地时朝上的面点数是6

C. 在“石头剪刀、和”的游戏中,小明随机出的是“剪刀”

D. 袋子中有1个红球和2个黄球,只有颜色上的区别,从中随机取出一个球是黄球

【答案】B

【解析】

利用频率估计概率对选项进行判断即可.

A、掷一枚质地均匀的硬币,落地时结果是“正面向上”的概率为,不符合题意;

B、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率为,符合题意;

C、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,不符合题意;

D、袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球的概率,不符合题意;

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,tanACB=2,D在△ABC内部,且AD=CD,ADC=90°,连接BD,若△BCD的面积为10,则AD的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】荆车中学决定在本校学生中,开展足球、篮球、羽毛球、乒乓球四种活动.为了了解学生对这四种活动的喜爱情况,学校随机调查了该校名学生,看他们喜爱哪一种活动(每名学生必选一种且只能从这四种活动中选择一种),现将调查的结果绘制成如下不完整的统计图.

(1)_____________,_______________;

(2)请补全上图中的条形图;

(3)根据抽样调查的结果,请估算全校1800名学生中,大约有多少人喜爱足球;

(4)在抽查的名学生中,喜爱打乒乓球的有10名同学(其中有4名女生,包括小红、小梅).现将喜爱打乒乓球的同学平均分成两组进行训练,只女生每组分两人.求小红、小梅能分在同一组的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为(  )

A. B. C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点O为坐标原点,抛物线y=ax22ax+x轴交于点AB(点A在点B的左侧),抛物线的顶点为C,直线ACy轴于点DDAC的中点.

(1)如图1,求抛物线的顶点坐标;

(2)如图2,点P为抛物线对称轴右侧上的一动点,过点PPQAC于点Q,设点P的横坐标为t,点Q的横坐标为m,求mt的函数关系式;

(3)在(2)的条件下,如图3,连接AP,过点CCEAP于点E,连接BE、CE分别交PQF、G两点,当点FPG中点时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),已知点G在正方形ABCD的对角线AC上,GEBCGFCD

1)①求证:四边形CEGF是正方形;②推断:的值为  

2)将正方形CEGF绕点C顺时针方向旋转α角(α45°),如图(2)所示,试探究线段AGBE之间的数量关系;

3)正方形CEGF在旋转过程中,当BEF三点在一条直线上时,如图(3)所示,延长CGAD于点H.若AG6GH2,求正方形CEGF和正方形ABCD的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,一次函数y=0.5x+3的图象与反比例函数y=k≠0)的图象交于A-5a),B两点,与x轴交于点D,与y轴交于点C,且AD=BC

1)求此反比例函数的表达式和B点坐标;

2)连接AOBO,若点Px轴上,且SBDP=SBOA,求点P的坐标;

3)如图2,作ABFE,点F和点E分别在y轴和x轴上,求证:∠AED=FEO

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=3x2+2x+n,当自变量x的取值在-1≤x≤1的范围内时,函数与x轴有且只有一个公共点,则n的取值范围是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,的平分线与DC交于点E,,BFAD的延长线交于点F,则BC等于  

A. 2 B. C. 3 D.

查看答案和解析>>

同步练习册答案