精英家教网 > 初中数学 > 题目详情
(2012•朝阳)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=
k2+4k+1
x
的图象上,若点A的坐标为(-2,-3),则k的值为(  )
分析:根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S四边形CEOF=S四边形HAGO,根据反比例函数比例系数的几何意义即可求出k2+4k+1=6,再解出k的值即可.
解答:解:如图:
∵四边形ABCD、HBEO、OECF、GOFD为矩形,
又∵BO为四边形HBEO的对角线,OD为四边形OGDF的对角线,
∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB
∴S△CBD-S△BEO-S△OFD=S△ADB-S△BHO-S△OGD
∴S四边形CEOF=S四边形HAGO=2×3=6,
∴xy=k2+4k+1=6,
解得,k=1或k=-5.
故选D.
点评:本题考查了反比例函数k的几何意义、矩形的性质、一元二次方程的解法,关键是判断出S四边形CEOF=S四边形HAGO
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•朝阳)如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费
7.4
7.4
元.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•朝阳)如图已知P为⊙O外一点,PA为⊙O的切线,B为⊙O上一点,且PA=PB,C为优弧
AB
上任意一点(不与A、B重合),连接OP、AB,AB与OP相交于点D,连接AC、BC.
(1)求证:PB为⊙O的切线;
(2)若tan∠BCA=
2
3
,⊙O的半径为
13
,求弦AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•朝阳)如图,△ABC三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点C顺时针旋转到△A′B′C的位置,且A′、B′仍落在格点上,则线段AC扫过的扇形所围成的圆锥体的底面半径是
13
4
13
4
单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•朝阳)如图,在正方形ABCD内有一折线段,其中AE⊥EF,EF⊥FC,并且AE=4,EF=8,FC=12,则正方形与其外接圆形成的阴影部分的面积为
80π-160
80π-160

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•朝阳)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF,请你添加一个条件(不需再添加任何线段或字母),使之能推出四边形ABCD为平行四边形,请证明.你添加的条件是
∠F=∠CDE
∠F=∠CDE

查看答案和解析>>

同步练习册答案