分析 (1)根据旋转可得∠CAE=100°,AC=AE,再根据三角形内角和定理可得∠AEC的度数;
(2)首先证明∠BAE=∠BFE,∠ABD=∠ADB=∠ACE=∠AEC,再根据对角相等的四边形是平行四边形,可证得四边形ABFE是平行四边形,然后再根据旋转可得AE=AB,依据邻边相等的平行四边形是菱形,即可证得.
解答 (1)解:根据旋转可得∠CAE=100°,AC=AE,
∵∠AEC+∠ACE+∠CAE=180°,
∴∠AEC=$\frac{1}{2}$(180°-100°)=40°;
(2)证明:证明:∵∠BAD=∠CAE=100°,AB=AC=AD=AE,
∴∠ABD=∠ADB=∠ACE=∠AEC=40°.
∵∠BAE=∠BAD+∠DAE=140°,
∴∠BFE=360°-∠BAE-∠ABD-∠AEC=140°,
∴∠BAE=∠BFE,
∴四边形ABFE是平行四边形,
∵AB=AE,
∴平行四边形ABFE是菱形.
点评 此题考查了等腰三角形的性质、旋转的性质以及菱形的判定,熟练掌握菱形的判定定理是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
选手 | 甲 | 乙 | 丙 |
平均数($\overline{x}$) | 9.3 | 9.3 | 9.3 |
方差(s2) | 0.026 | 0.015 | 0.032 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com